Jürgen Kirschner

Learn More
Quantum interference is a coherent quantum phenomenon that takes place in confined geometries. Using spin-polarized scanning tunneling microscopy, we found that quantum interference of electrons causes spatial modulation of spin polarization within a single magnetic nanostructure. We observed changes in both the sign and magnitude of the spin polarization(More)
The stable magnetization configurations of a ferromagnet on a quasiperiodic tiling have been derived theoretically. The magnetization configuration is investigated as a function of the ratio of the exchange to the dipolar energy. The exchange coupling is assumed to decrease exponentially with the distance between magnetic moments. It is demonstrated that(More)
A reversible switching of the easy axis of magnetization for Ni on Cu(001) from in plane to out of plane is found by changing the partial pressure of hydrogen in the gas phase around the sample, allowing even for oscillations of the magnetization direction. A quantitative low-energy electron diffraction study of the diffracted intensity versus electron(More)
We review the application of cantilever-based stress measurements in surface science and magnetism. The application of thin (thickness appr. 0.1 mm) single crystalline substrates as cantilevers has been used successfully to measure adsorbate-induced surface stress changes, lattice misfit induced film stress, and magneto-elastic stress of ferromagnetic(More)
The main idea behind magnonics is to use the elementary magnetic excitations (magnons) for information transfer and processing. One of the main challenges, hindering the application of ultrafast terahertz magnons in magnonics, has been the short lifetime of these excitations in metallic ferromagnets. Here, we demonstrate that the engineering of the(More)
Semiconductors with strong spin-orbit interaction as the underlying mechanism for the generation of spin-polarized electrons are showing potential for applications in spintronic devices. Unveiling the full spin texture in momentum space for such materials and its relation to the microscopic structure of the electronic wave functions is experimentally(More)
We have studied the line shapes of Cu(0 0 1)-p (2 × 2)S L2VV and L3VV Auger decay by means of Auger photoelectron coincidence spectroscopy. Measuring the LVV Auger spectrum in coincidence with S 2p1/2 and 2p3/2 photoelectrons respectively, we have been able to separate the two overlapping Auger spectra and determine their intrinsic line shapes. The two(More)
We use scanning tunneling spectroscopy (STS) experiments and first-principles density functional theory (DFT) calculations to address a fundamental question of how quantum well (QW) states for electrons in a metal evolve spatially in the lateral direction when there is a surface step that changes the vertical confinement thickness. This study reveals a(More)
The universal response of a sudden created core hole, predicted to occur on an attosecond (10(-18)  s) time scale, lacks an experimental demonstration. With a two-dimensional coincidence spectrometer, we demonstrate an extensive energy sharing between the Ag 4p photoelectron and the N2,3VV Auger electron exceeding 10 eV. This energy width provides access to(More)
Scanning tunneling spectroscopy (STS) was used to measure local differential conductance (dI/dV) spectra on nanometer-size graphene islands on an Ir(111) surface. Energy resolved dI/dV maps clearly show a spatial modulation, which we ascribe to a modulated local density of states due to quantum confinement. STS near graphene edges indicates a position(More)