Learn More
High ethanol tolerance is an exquisite characteristic of the yeast Saccharomyces cerevisiae, which enables this microorganism to dominate in natural and industrial fermentations. Up to now, ethanol tolerance has only been analyzed in laboratory yeast strains with moderate ethanol tolerance. The genetic basis of the much higher ethanol tolerance in natural(More)
In this article, we present a computation- and memory-efficient method to calculate the probabilities of occurrence and exact center-masses of the aggregated isotopic distribution of a molecule. The method uses fundamental mathematical properties of polynomials given by the Newton-Girard theorem and Viete's formulae. The calculation is based on the atomic(More)
This Letter presents the R-package implementation of the recently introduced polynomial method for calculating the aggregated isotopic distribution called BRAIN (Baffling Recursive Algorithm for Isotopic distributioN calculations). The algorithm is simple, easy to understand, highly accurate, fast, and memory-efficient. The method is based on the(More)
The analysis of polygenic, phenotypic characteristics such as quantitative traits or inheritable diseases remains an important challenge. It requires reliable scoring of many genetic markers covering the entire genome. The advent of high-throughput sequencing technologies provides a new way to evaluate large numbers of single nucleotide polymorphisms (SNPs)(More)
The analysis of polygenic, phenotypic characteristics such as quantitative traits or inheritable diseases requires reliable scoring of many genetic markers covering the entire genome. The advent of high-throughput sequencing technologies provides a new way to evaluate large numbers of single nucleotide polymorphisms as genetic markers. Combining the(More)
The analysis of polygenetic characteristics for mapping quantitative trait loci (QTL) remains an important challenge. QTL analysis requires two or more strains of organisms that differ substantially in the (poly-)genetic trait of interest, resulting in a heterozygous offspring. The offspring with the trait of interest is selected and subsequently screened(More)
Advances in molecular analyses based on high-throughput technologies can contribute to a more accurate classification of non-small cell lung cancer (NSCLC), as well as a better prediction of both the disease course and the efficacy of targeted therapies. Here we set out to analyze whether global gene expression profiling performed in a group of early-stage(More)
The elemental isotope definition used to calculate the theoretical masses and isotope distribution of (bio)molecules is considered to be a fixed, universal standard in mass-spectrometry-based proteomics. However, this is an incorrect assumption. In view of the ongoing advances in mass spectrometry technology, and in particular the ever-increasing mass(More)
Mass spectrometry enables the study of increasingly larger biomolecules with increasingly higher resolution, which is able to distinguish between fine isotopic variants having the same additional nucleon count, but slightly different masses. Therefore, the analysis of the fine isotopic distribution becomes an interesting research topic with important(More)
To extract a genuine peptide signal from a mass spectrum, an observed series of peaks at a particular mass can be compared with the isotope distribution expected for a peptide of that mass. To decide whether the observed series of peaks is similar to the isotope distribution, a similarity measure is needed. In this short communication, we investigate(More)