Jörn Borgert

Learn More
Magnetic particle imaging (MPI) is a new tomographic imaging method potentially capable of rapid 3D dynamic imaging of magnetic tracer materials. Until now, only dynamic 2D phantom experiments with high tracer concentrations have been demonstrated. In this letter, first in vivo 3D real-time MPI scans are presented revealing details of a beating mouse heart(More)
BACKGROUND Magnetic particle imaging (MPI) is a new tomographic imaging technique capable of imaging magnetic tracer material at high temporal and spatial resolution. Image reconstruction requires solving a system of linear equations, which is characterized by a "system function" that establishes the relation between spatial tracer position and frequency(More)
This paper presents the first detailed simulation approach to evaluate the proposed imaging method called 'magnetic particle imaging' with respect to resolution and sensitivity. The simulated scanner is large enough to accept human bodies. Together with the choice of field strength and noise the setup is representative for clinical applications. Good(More)
Magnetic particle imaging (MPI) shows promise for medical imaging, particularly in angiography of patients with chronic kidney disease. As the first biomedical imaging technique that truly depends on nanoscale materials properties, MPI requires highly optimized magnetic nanoparticle tracers to generate quality images. Until now, researchers have relied on(More)
Magnetic particle imaging (MPI) is a new tomographic imaging approach that can quantitatively map magnetic nanoparticle distributions in vivo. It is capable of volumetric real-time imaging at particle concentrations low enough to enable clinical applications. For image reconstruction in 3-D MPI, a system function (SF) is used, which describes the relation(More)
Recently a new imaging technique called magnetic particle imaging was proposed. The method uses the nonlinear response of magnetic nanoparticles when a time varying magnetic field is applied. Spatial encoding is achieved by moving a field-free point through an object of interest while the field strength in the vicinity of the point is high. A resolution in(More)
Magnetic particle imaging (MPI) is a new imaging technique capable of imaging the distribution of superparamagnetic particles at high spatial and temporal resolution. For the reconstruction of the particle distribution, a system of linear equations has to be solved. The mathematical solution to this linear system can be obtained using a least-squares(More)
Magnetic particle imaging (MPI) is a new tomographic imaging method which is able to capture the fast dynamic behavior of magnetic tracer material. From measured induced signals, the unknown magnetic particle concentration is reconstructed using a previously determined system function, which describes the relation between particle position and signal(More)
In magnetic particle imaging (MPI), the spatial distribution of magnetic nanoparticles is determined by applying various static and dynamic magnetic fields. Due to the complex physical behavior of the nanoparticles, it is challenging to determine the MPI system matrix in practice. Since the first publication on MPI in 2005, different methods that rely on(More)
This paper presents the first experimental results on magnetic particle imaging with full 2D encoding. The encoding speed achieved was 3.88 ms for a field of view of 1x1 cm2. Small phantoms composed of several dots each filled with 200 nl undiluted Resovist (500 mmol(Fe) l(-1)) were scanned. A resolution of better than 1 mm was achieved for a frame rate of(More)