Learn More
Mitogenic signals stimulate cell division by activating cyclin/cyclin-dependent kinase (CDK) complexes. Their timely regulation ensures proper cell cycle progression. It is therefore not surprising that cyclin/CDK complexes are integrators of multiple signals from both the extracellular environment and intracellular cues. Important regulators of cyclin/CDKs(More)
Cyclin-dependent kinases (Cdks) fulfill key functions in many cellular processes, including cell cycle progression and cytoskeletal dynamics. A limited number of Cdk substrates have been identified with few demonstrated to be regulated by Cdk-dependent phosphorylation. We identify on protein expression arrays novel cyclin E-Cdk2 substrates, including SIRT2,(More)
Silent information regulator 1 (SIRT1) represents an NAD(+)-dependent deacetylase that inhibits proapoptotic factors including p53. Here we determined whether SIRT1 is downstream of the prototypic c-MYC oncogene, which is activated in the majority of tumors. Elevated expression of c-MYC in human colorectal cancer correlated with increased SIRT1 protein(More)
The proteins of the MYC family are key regulators of cell behavior. MYC, originally identified as an oncoprotein, affects growth, proliferation, differentiation, and apoptosis of cells through its ability to regulate a significant number of genes. In addition MYC governs events associated with tumor progression, including genetic stability, migration, and(More)
The c-MYC oncoprotein regulates various aspects of cell behaviour by modulating gene expression. Here, we report the identification of the cAMP-response-element-binding protein (CBP) as a novel c-MYC binding partner. The two proteins interact both in vitro and in cells, and CBP binds to the carboxy-terminal region of c-MYC. Importantly, CBP, as well as(More)
The proteins of the MYC/MAX/MAD network are central regulators of many key processes associated with basic cell physiology. These include the regulation of protein biosynthesis, energy metabolism, proliferation, and apoptosis. Molecularly the MYC/MAX/MAD network achieves these broad activities by controlling the expression of many target genes, which are(More)
The proto-oncoprotein c-Myc functions as a transcriptional regulator that controls different aspects of cell behavior, including proliferation, differentiation, and apoptosis. In addition, Myc proteins have the potential to transform cells and are deregulated in the majority of human cancers. Several Myc-interacting factors have been described that mediate(More)
The MYC and RAS oncogenes are frequently activated in cancer and, together, are sufficient to transform rodent cells. The basis for this cooperativity remains unclear. We found that although Ras interfered with Myc-induced apoptosis, Myc repressed Ras-induced senescence, together abrogating two main barriers of tumorigenesis. Inhibition of cellular(More)
Entry of cells into the cell division cycle requires the coordinated activation of cyclin-dependent kinases (cdks) and the deactivation of cyclin kinase inhibitors. Degradation of p27kip1 is known to be a central component of this process as it allows controlled activation of cdk2-associated kinase activity. Turnover of p27 at the G1/S transition is(More)
Myc proteins function in heterodimeric complexes with Max proteins as transcriptional regulators at least in part by binding to E box sequences with a 5'-CACGTG core. Since such E boxes are found frequently in the human genome and since other proteins besides Myc/Max can bind to similar or identical sequences it is unclear how the specificity of E(More)