Jörg Reinders

Learn More
We performed a comprehensive approach to determine the proteome of Saccharomyces cerevisiae mitochondria. The proteins of highly pure yeast mitochondria were separated by several independent methods and analyzed by tandem MS. From >20 million MS spectra, 750 different proteins were identified, indicating an involvement of mitochondria in numerous cellular(More)
Proteomic analyses of different subcellular compartments, so-called organellar proteomics, facilitate the understanding of cellular functions on a molecular level. In this work, various orthogonal multidimensional separation techniques both on the protein and on the peptide level are compared with regard to the number of identified proteins as well as the(More)
We have employed the proteomic approach in combination with mass spectrometry to study the immune response of honey bee workers at different developmental stages. Analysis of the hemolymph proteins of noninfected, mock-infected and immune-challenged individuals by polyacrylamide gel electrophoresis showed differences in the protein profiles. We present(More)
During the last decade, protein analysis and proteomics have been established as new tools for understanding various biological problems. As the identification of proteins after classical separation techniques, such as two-dimensional gel electrophoresis, have become standard methods, new challenges arise in the field of proteomics. The development of(More)
Mitochondria are crucial for numerous cellular processes, yet the regulation of mitochondrial functions is only understood in part. Recent studies indicated that the number of mitochondrial phosphoproteins is higher than expected; however, the effect of reversible phosphorylation on mitochondrial structure and function has only been defined in a few cases.(More)
Royal jelly plays a pivotal role in the development of honey bee larvae. However, while various health promoting properties of royal jelly have been reported, most of the active substances within royal jelly that lead to these properties are still unknown. Since up to 50% (dry mass) of royal jelly is protein, royal jelly proteome analysis is a promising(More)
Non-alcoholic steatohepatitis (NASH) accounts for a large proportion of cryptic cirrhosis in the Western societies. Nevertheless, we lack a deeper understanding of the underlying pathomolecular processes, particularly those preceding hepatic inflammation and fibrosis. In order to gain novel insights into early NASH-development from the first appearance of(More)
Presently, phosphorylation of proteins is the most studied and best understood PTM. However, the analysis of phosphoproteins and phosphopeptides is still one of the most challenging tasks in contemporary proteome research. Since not every phosphoprotein is accessible by a certain method and identification of the phosphorylated amino acid residue is required(More)
Cerebral cavernous malformations (CCMs) may cause recurrent headaches, seizures, and hemorrhagic stroke and have been associated with loss-of-function mutations in CCM1/KRIT1, CCM2, and CCM3/programmed cell death 10 (PDCD10). The CCM3/PDCD10 amino acid sequence does not reveal significant homologies to protein domains with known structure. With the help of(More)
Both enzymatically and non-enzymatically generated oxylipins fulfill signalling functions in plant responses to biotic and oxidative stress on the cellular level. We studied the impact of two different exogenously applied cyclopentenone-oxylipins on the proteome of Arabidopsis thaliana leaves: the enzymatically formed 12-oxo-phytodienoic-acid, a member of(More)