Learn More
Comamonas testosteroni T-2 degraded at least eight aromatic compounds via protocatechuate (PCA), whose extradiol ring cleavage to 2-hydroxy-4-carboxymuconate semialdehyde (HCMS) was catalysed by PCA 4,5-dioxygenase (PmdAB). This inducible, heteromultimeric enzyme was purified. It contained two subunits, alpha (PmdA) and beta (PmdB), and the molecular masses(More)
TsaR is the putative LysR-type regulator of the tsa operon (tsaMBCD) which encodes the first steps in the degradation of p-toluenesulfonate (TSA) in Comamonas testosteroni T-2. Transposon mutagenesis was used to knock out tsaR. The resulting mutant lacked the ability to grow with TSA and p-toluenecarboxylate (TCA). Reintroduction of tsaR in trans on an(More)
Inducible mineralization of TSA (4-toluenesulphonate) by Comamonas testosteroni T-2 is initiated by a secondary transport system, followed by oxygenation and oxidation by TsaMBCD to 4-sulphobenzoate under the regulation of TsaR and TsaQ. Evidence is presented for a novel, presumably two-component transport system (TsaST). It is proposed that TsaT, an(More)
The discovery of programmable double-stranded DNA specific nucleases derived from the prokaryotic immunity systems CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) has opened a new era of genome editing and its applications in industrial biotechnology. Simple reprogramming of the DNA-specificity of CRISPR nucleases by RNAs allows the(More)
  • 1