Learn More
—We report on field trials using CoMP transmission in the downlink of a mobile radio network. Two new features enable over-the-air CoMP transmission from physically separated base stations and terminals. These are distributed synchronization and a fast virtual local area network. Using VLAN tags, terminals feed back the multi-cell channel state information(More)
—In this paper, we present a wireless micro inertial measurement unit (IMU) with the smallest volume and weight requirements available at the moment. With a size of 18 mm x 16 mm x 4 mm, this IMU provides full control over the data of a three-axis accelerometer, a three-axis gyroscope, and a three-axis magnetometer. It meets the design prerequisites of a(More)
— Nowadays, robots often operate in environments that they share with humans. The ability to act similar to humans is an important prerequisite for the social acceptance of robots. In this paper, we consider the problem of navigation in populated environments. We present a path planning algorithm that enables robots to move efficiently and smoothly with(More)
In recent years, autonomous miniature airships have gained increased interest in the robotics community. This is due to their ability to move safely and hover for extended periods of time. The major constraints of miniature airships come from their limited payload which introduces substantial constraints on their perceptional capabilities. In this paper, we(More)
—Localization based on time differences of arrival (TDOA) has turned out to be a promising approach when neither receiver positions nor the positions of signal origins are known a priori. In this paper, we consider calibration-free tracking of a mobile beacon using TDOA, i.e., the positions of the receivers are not given. We propose a probabilistic(More)
For the quantitative analysis of cellular metabolism and its dynamics it is essential to achieve rapid sampling, fast quenching of metabolism and the removal of extracellular metabolites. Common manual sample preparation methods and protocols for cells are time-consuming and often lead to the loss of physiological conditions. In this work, we present a(More)
Precise navigation is a key capability of autonomous mobile robots and required for many tasks including transportation or docking. To guarantee a robust and accurate localization and navigation performance, many practical approaches rely on observations of artificial landmarks. This raises the question of where to place the landmarks along the desired(More)
Being able to navigate accurately is one of the fundamental capabilities of a mobile robot to effectively execute a variety of tasks including docking, transportation, and manipulation. As real-world environments often contain changing or ambiguous areas, existing features can be insufficient for mobile robots to establish a robust navigation behavior. A(More)
We consider the cooperative control of a team of robots to estimate the position of a moving target using onboard sensing. In particular, we do not assume that the robot positions are known, but estimate their positions using relative onboard sensing. Our probabilistic localization and control method takes into account the motion and sensing capabilities of(More)
In navigation tasks, mobile robots often have to deal with substantial uncertainty due to imperfect actuators and noisy sensor measurements. In this paper, we consider the problem of online trajectory generation for safe navigation in the presence of state uncertainty and the resulting deviations from the desired trajectory. Our approach combines(More)