Learn More
We have investigated spatial variations of the diffusion behavior of the green fluorescent protein mutant EGFP (F64L/S65T) and of the EGFP-beta-galactosidase fusion protein in living cells with fluorescence correlation spectroscopy. Our fluorescence correlation spectroscopy device, in connection with a precision x-y translation stage, provides submicron(More)
Little is known about how chromatin folds in its native state. Using optimized in situ hybridization and live imaging techniques have determined compaction ratios and fiber flexibility for interphase chromatin in budding yeast. Unlike previous studies, ours examines nonrepetitive chromatin at intervals short enough to be meaningful for yeast chromosomes and(More)
The ring closure probability, or j factor, has been measured for DNA restriction fragments of defined sequence bearing EcoRI cohesive ends and ranging in size from 126 to 4361 base pairs (bp). The j factor is defined as the ratio of the equilibrium constants for cyclization and for bimolecular association via the cohesive ends. The end-joining reactions are(More)
Effective initiation of transcription, especially in eukaryotes, requires the specific assembly of large protein complexes at promoters. We ask here how activator proteins that are bound hundreds or thousands of base pairs away from the promoter might facilitate this process if protein-protein interactions occur via looping of the intervening DNA. We show(More)
For the interpretation of solution structural and dynamic data of linear and circular DNA molecules in the kb range, and for the prediction of the effect of local structural changes on the global conformation of such DNAs, we have developed an efficient and easy way to set up a program based on a second-order explicit Brownian dynamics algorithm. The DNA is(More)
Merozoites of the malaria parasite Plasmodium falciparum expose at their surface a large multiprotein complex, composed of proteolytically processed, noncovalently associated products of at least three genes, msp-1, msp-6, and msp-7. During invasion of erythrocytes, this complex is shed from the surface except for a small(More)
Movement of particles in cell nuclei can be affected by viscosity, directed flows, active transport, or the presence of obstacles such as the chromatin network. Here we investigate whether the mobility of small fluorescent proteins is affected by the chromatin density. Diffusion of inert fluorescent proteins was studied in living cell nuclei using(More)
Eukaryotic cells contain three cytoskeletal filament systems that exhibit very distinct assembly properties, supramolecular architectures, dynamic behaviour and mechanical properties. Microtubules and microfilaments are relatively stiff polar structures whose assembly is modulated by the state of hydrolysis of the bound nucleotide. In contrast, intermediate(More)
In vitro assembly of intermediate filament proteins is a very rapid process. It starts without significant delay by lateral association of tetramer complexes into unit-length filaments (ULFs) after raising the ionic strength from low salt to physiological conditions (100 mM KCl). We employed electron and scanning force microscopy complemented by(More)
We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully(More)