Jörg Kämper

Learn More
In the phytopathogenic fungus Ustilago maydis, the switch to filamentous growth and pathogenic development is controlled by a heterodimeric transcription factor consisting of the bW and bE homeodomain proteins. To identify genes in the regulatory cascade triggered by the bW/bE heterodimer, we have constructed strains in which transcription of the b genes is(More)
Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here(More)
MOTIVATION Microarray technology enables the study of gene expression in large scale. The application of methods for data analysis then allows for grouping genes that show a similar expression profile and that are thus likely to be co-regulated. A relationship among genes at the biological level often presents itself by locally similar and potentially(More)
In the phytopathogenic basidiomycete Ustilago maydis, sexual and pathogenic development are tightly connected and controlled by the heterodimeric bE/bW transcription factor complex encoded by the b-mating type locus. The formation of the active bE/bW heterodimer leads to the formation of filaments, induces a G2 cell cycle arrest, and triggers pathogenicity.(More)
In the smut fungus Ustilago maydis, a tightly regulated cAMP signaling cascade is necessary for pathogenic development. Transcriptome analysis using whole genome microarrays set up to identify putative target genes of the protein kinase A catalytic subunit Adr1 revealed nine genes with putative functions in two high-affinity iron uptake systems. These genes(More)
Many microorganisms produce surface-active substances that enhance the availability of water-insoluble substrates. Although many of these biosurfactants have interesting potential applications, very little is known about their biosynthesis. The basidiomycetous fungus Ustilago maydis secretes large amounts of mannosylerythritol lipids (MELs) under conditions(More)
The fungal pathogen Ustilago maydis establishes a biotrophic relationship with its host plant maize (Zea mays). Hallmarks of the disease are large plant tumours in which fungal proliferation occurs. Previous studies suggested that classical defence pathways are not activated. Confocal microscopy, global expression profiling and metabolic profiling now shows(More)
Plant pathogenic fungi cause massive yield losses and affect both quality and safety of food and feed produced from infected plants. The main objective of plant pathogenic fungi is to get access to the organic carbon sources of their carbon-autotrophic hosts. However, the chemical nature of the carbon source(s) and the mode of uptake are largely unknown.(More)
The plant pathogenic fungus Ustilago maydis induces disease only in its dikaryotic stage that is generated after mating. This process involves coordinated cAMP and mitogen-activated protein kinase signalling to regulate transcriptional as well as morphological responses. Among the induced products is the key regulator for pathogenic development. Recent(More)
Introduction. Plasmids of eukaryotes have long been a neglected subject. Because they were initially found only in Saccharomyces cerevisiae (Sinclair et al. 1967), they were considered to be genetic elements of limited distribution with a cryptic function. Subsequently plasmids were detected in a plant, Zea mays (Pring et al. 1977), and in a filamentous(More)