Learn More
The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature(More)
Autoantibodies and complement opsonization have been implicated in the process of demyelination in the major human CNS demyelinating disease multiple sclerosis (MS), but scavenger receptors (SRs) may also play pathogenetic roles. We characterized SR mRNA and protein expression in postmortem brain tissue from 13 MS patients in relation to active(More)
CD97 is a recently identified seven-span transmembrane (7-TM) protein that is expressed by leukocytes early after activation. CD97 binds to its cellular ligand CD55 (decay accelerating factor), which protects several cell types from complement-mediated damage. The functional consequences of CD97-CD55 binding are largely unknown, but previous data imply that(More)
At present, approximately 150 different members of the adhesion-G protein-coupled receptor (GPCR) family have been identified in metazoans. Surprisingly, very little is known about their function, although they all possess large extracellular domains coupled to a seven-transmembrane domain, suggesting a potential role in cell adhesion and signaling. Here,(More)
Immune surveillance of the central nervous system (CNS) by T cells is important to keep CNS-trophic viruses in a latent state, yet our knowledge of the characteristics of CNS-populating T cells is incomplete. We performed a comprehensive, multi-color flow-cytometric analysis of isolated T cells from paired corpus callosum (CC) and peripheral blood (PB)(More)
The EGF-TM7 receptors CD97 and EMR2 are heptahelical molecules predominantly expressed on leukocytes. A characteristic of these receptors is their ability to interact with cellular ligands via the N-terminal epidermal growth factor (EGF)-like domains. The first two EGF domains of CD97 (but not EMR2) bind CD55 (decay-accelerating factor), while the fourth(More)
The EGF-TM7 family is a group of class B seven-span transmembrane (TM7) receptors expressed predominantly by cells of the immune system. Family members CD97, EMR1, EMR2, EMR3, and ETL are characterized by an extended extracellular region with a variable number of N-terminal epidermal growth factor (EGF)-like domains coupled to a TM7 domain by a stalk. The(More)
BACKGROUND In addition to its complement-regulating activity, CD55 is a ligand of the adhesion class G protein-coupled receptor CD97; however, the relevance of this interaction has remained elusive. We previously showed that mice lacking a functional CD97 gene have increased numbers of granulocytes. METHODOLOGY/RESULTS Here, we demonstrate that(More)
The epidermal growth factor (EGF)-TM7 receptors CD97, EMR1, EMR2, EMR3, and EMR4 form a group of adhesion class heptahelical molecules predominantly expressed by cells of the immune system. These receptors bind cellular ligands through EGF-like domains, localized N-terminal to a large extracellular region. Remarkably, EMR2 possesses a chimeric structure(More)
The hypothalamus-pituitary-adrenal (HPA) axis is activated in most, but not all multiple sclerosis (MS) patients and is implicated in disease progression and comorbid mood disorders. In this post-mortem study, we investigated how HPA axis activity in MS is related to disease severity, neurodegeneration, depression, lesion pathology and gene expression in(More)