Learn More
BACKGROUND The goal of the gene normalization task is to link genes or gene products mentioned in the literature to biological databases. This is a key step in an accurate search of the biological literature. It is a challenging task, even for the human expert; genes are often described rather than referred to by gene symbol and, confusingly, one gene name(More)
MOTIVATION Text mining in the biomedical domain aims at helping researchers to access information contained in scientific publications in a faster, easier and more complete way. One step towards this aim is the recognition of named entities and their subsequent normalization to database identifiers. Normalization helps to link objects of potential interest,(More)
The most important way of conveying new findings in biomedical research is scientific publication. Extraction of protein-protein interactions (PPIs) reported in scientific publications is one of the core topics of text mining in the life sciences. Recently, a new class of such methods has been proposed - convolution kernels that identify PPIs using deep(More)
We propose a method for automated extraction of protein-protein interactions from scientific text. Our system matches sentences against syntax patterns typically describing protein interactions. We define a set of 22 patterns, each a regular expression consisting of anchor positions and parameterizable constraints. This small set is then refined and(More)
SUMMARY Identifying mentions of named entities, such as genes or diseases, and normalizing them to database identifiers have become an important step in many text and data mining pipelines. Despite this need, very few entity normalization systems are publicly available as source code or web services for biomedical text mining. Here we present the Gnat Java(More)
UNLABELLED The biomedical literature contains a wealth of information on associations between many different types of objects, such as protein-protein interactions, gene-disease associations and subcellular locations of proteins. When searching such information using conventional search engines, e.g. PubMed, users see the data only one-abstract at a time(More)
The recognition of biomedical concepts in natural text (named entity recognition, NER) is a key technology for automatic or semi-automatic analysis of textual resources. Precise NER tools are a prerequisite for many applications working on text, such as information retrieval, information extraction or document classification. Over the past years, the(More)
We present a system for the identification of syntax patterns describing interactions between genes and proteins in scientific text. The system uses sequence alignments applied to sentences annotated with interactions and syntactical information (part-of-speech), as well as finite state automata optimized with a genetic algorithm. Both methods identified(More)
High-throughput screens such as microarrays and RNAi screens produce huge amounts of data. They typically result in hundreds of genes, which are often further explored and clustered via enriched GeneOntology terms. The strength of such analyses is that they build on high-quality manual annotations provided with the GeneOntology. However, the weakness is(More)
" Don't I know you from somewhere? " – comparing new to known texts plays a key role in the system we propose for searching protein–protein interactions (PPIs). Our system builds on an inexact pattern matching strategy, where patterns (linguistic frames) reflect the compositional structure of known occurrences of PPIs in text. To describe this structure,(More)