Jörg C. Woehl

Learn More
In this paper we present a rigorous and general theoretical model for the illumination point spread function of a confocal microscope that correctly reproduces the optical setup. The model uses vectorial theory and assumes that monochromatic light with a Gaussian intensity distribution (such as from a laser or a single-mode fiber) is focused by a microscope(More)
Light diffraction through a subwavelength aperture located at the apex of a metallic screen with conical geometry is investigated theoretically. A method based on a multipole field expansion is developed to solve Maxwell's equations analytically using boundary conditions adapted both for the conical geometry and for the finite conductivity of a real metal.(More)
The far-field transmission pattern of a tapered optical tip with small aperture (radius approximately < 40 nm) is modelled by solving Maxwell's equations in the radiation zone with boundary conditions appropriate to the conical geometry. The model is able to reproduce the large differences between the S and P polarizations observed previously in the(More)
A near-field optical microscope has been developed for operation at low temperature. This microscope is used to study the photoluminescence of CdTe-based quantum dots. Spectra collected upon approaching the optical tip into the near-field region of the sample reveal the evolution from a broad far-field luminescence band - that is typical for a large(More)
We present a procedure for fabricating optical tips from photonic crystal fibers which feature a solid core surrounded by a cladding with a hexagonal, multilayer arrangement of air channels running along the length of the fiber. Such optical tips may have unique advantages for the production of near-field optical aperture probes (i.e., metal-coated optical(More)
  • 1