Learn More
For birds, unpredictable environments during the energetically stressful times of moulting and breeding are expected to have negative fitness effects. Detecting those effects however, might be difficult if individuals modulate their physiology and/or behaviours in ways to minimize short-term fitness costs. Corticosterone in feathers (CORTf) is thought to(More)
The seasonal decline of avian clutch size may result from the conflict between the advantage of early breeding (greater offspring value) and the advantage of a delay in lay date (improved body condition and hence clutch size). We tested predictions of a condition-dependent individual optimization model based on this trade-off (Rowe et al. 1994) in a(More)
Variation in yolk hormones is assumed to provide the plasticity necessary for mothers to individually optimize reproductive decisions via changes in offspring phenotype, the benefit being to maximise fitness. However, rather than routinely expecting adaptive variation within all species, the pattern and magnitude of yolk hormone deposition should(More)
Individuals breeding in seasonal environments are under strong selection to time reproduction to match offspring demand and the quality of the post-natal environment. Timing requires both the ability to accurately interpret the appropriate environmental cues, and the flexibility to respond to inter-annual variation in these cues. Determining which cues are(More)
Although animal population dynamics have often been correlated with fluctuations in precipitation, causal relationships have rarely been demonstrated in wild birds. We combined nest observations with a field experiment to investigate the direct effect of rainfall on survival of peregrine falcon (Falco peregrinus) nestlings in the Canadian Arctic. We then(More)
Integrative biologists have long appreciated that the effective acquisition and management of energy prior to breeding should strongly influence fitness-related reproductive decisions (timing of breeding and reproductive investment). However, because of the difficulty in capturing pre-breeding individuals, and the tendency towards abandonment of(More)
In natural populations, epidemics provide opportunities to look for intense natural selection on genes coding for life history and immune or other physiological traits. If the populations being considered are of management or conservation concern, then identifying the traits under selection (or 'markers') might provide insights into possible intervention(More)
We examined the role of trophic interactions in structuring a high arctic tundra community characterized by a large breeding colony of greater snow geese (Chen caerulescens atlantica). According to the exploitation ecosystem hypothesis of Oksanen et al. (1981), food chains are controlled by top-down interactions. However, because the arctic primary(More)
Quantifying the costs and benefits of migration distance is critical to understanding the evolution of long-distance migration. In migratory birds, life history theory predicts that the potential survival costs of migrating longer distances should be balanced by benefits to lifetime reproductive success, yet quantification of these reproductive benefits in(More)
Arctic wildlife is often presented as being highly at risk in the face of current climate warming. We use the long-term (up to 24 years) monitoring records available on Bylot Island in the Canadian Arctic to examine temporal trends in population attributes of several terrestrial vertebrates and in primary production. Despite a warming trend (e.g. cumulative(More)