József Nemes Nagy

Learn More
Long-term alcohol exposure may lead to development of alcohol dependence in consequence of altered neurotransmitter functions. Accumulating evidence suggests that the N-methyl-D-aspartate (NMDA) type of glutamate receptors is a particularly important site of ethanol's action. Several studies showed that ethanol potently inhibits NMDA receptors (NMDARs) and(More)
Ethanol is a small molecule acting on several neurotransmitter systems in the brain. Accumulating evidences suggest that the primary excitatory--i.e. the glutamatergic--neurotransmitter system is a particularly important site of ethanol's action. Several studies showed that ethanol is a potent and selective inhibitor of the N-methyl-D-aspartate (NMDA)(More)
Severe cellular damage and neuronal cell loss were previously observed in cultures of primary cortical neurones after chronic ethanol pre-treatment followed by ethanol-withdrawal. In this study, we investigated the circumstances and the possible cellular changes leading to alcohol-withdrawal induced neuronal cell death. When cultures were pre-treated with(More)
Long-term alcohol exposure gives rise to development of physical dependence on alcohol in consequence of changes in certain neurotransmitter functions. Accumulating evidence suggests that the glutamatergic neurotransmitter system, especially the N-methyl-D-aspartate (NMDA) type of glutamate receptors is a particularly important site of ethanol's action,(More)
N-Methyl-D-aspartate (NMDA) receptor-mediated glutamatergic neurotransmission is thought to play a central role in the development of alcohol dependence and this alteration is supposed to be due to a differential up-regulation of the NR2B type of subunits. In this work, we examined the effect of some known (CP-101,606; CI-1041 and Co-101,244) and novel(More)
In our previous experiments, severe cellular damages and neuronal cell loss were observed following 24h of alcohol withdrawal in primary cultures of rat cortical neurones pre-treated with ethanol (50-200 mM) repeatedly for 3 days. Increased NMDA induced cytosolic calcium responses and excitotoxicity were also demonstrated in the ethanol pre-treated(More)
The carbene concentration in 1-ethyl-3-methylimidazolium-acetate ionic liquid is sufficiently high to act as a catalyst in benzoin condensation, hydroacylation and also in oxidation of an alcohol by using CO(2) and air. This observation reveals the potential of ionic liquid organocatalysts, uniting the beneficial properties of these two families of(More)
Accumulating evidence has indicated the involvement of glutamatergic neurotransmission in the pathophysiology of excitotoxicity and in the mechanism of action of antidepressants. We have previously shown that tricyclic desipramine and the selective serotonin reuptake inhibitor fluoxetine inhibit NMDA receptors (NMDARs) in the clinically relevant, low(More)
Physical dependence on alcohol was observed previously at the cellular level in cultured IM-9 human lymphoblast cells. To answer the question whether physical dependence can also develop in neurones and to investigate the neuronal processes involved in the development of alcohol dependence and withdrawal symptoms, cultures of cortical neurones were adapted(More)
Small cell lung cancer (SCLC) cell lines produce and secrete various peptide hormones, e.g. bombesin (BN)/gastrin releasing peptide (GRP) like peptides that are proposed to function as their autocrine growth factors. To inhibit the proliferative effect of these hormones we have synthesized short chain BN[7-14]-analogues replacing the C-terminal peptide bond(More)