Learn More
Dielectric microspheres are shown to be capable of confining light in a three-dimensional region of subwavelength dimensions when they are illuminated by tightly focused Gaussian beams. We show that a simple configuration, not involving resonances, permits one to reach an effective volume as small as 0.6 (lambda/n)(3). It is shown that this(More)
Quantum continuous variables are being explored as an alternative means to implement quantum key distribution, which is usually based on single photon counting. The former approach is potentially advantageous because it should enable higher key distribution rates. Here we propose and experimentally demonstrate a quantum key distribution protocol based on(More)
Received (received date) Revised (revised date) We discuss quantum key distribution protocols using quantum continuous variables. We show that such protocols can be made secure against individual gaussian attacks regardless the transmission of the optical line between Alice and Bob. This is achieved by reversing the reconciliation procedure subsequent to(More)
We report the experimental proof of molecular count rate enhancement (up to 6.5-fold) and lifetime reduction for single fluorescent molecules diffusing in subwavelength apertures milled in aluminum films. The observed enhancement dependence with the aperture diameter agrees qualitatively with numerical electromagnetic computations of the excitation power(More)
We explore the combination of a latex microsphere with a low NA lens to form a high performance optical system, and enable the detection of single molecules by fluorescence correlation spectroscopy (FCS). Viable FCS experiments at concentrations 1-1000 nM with different objectives costing less than $40 are demonstrated. This offers a simple and low-cost(More)
Recent advances in nanophotonics open the way for promising applications towards efficient single molecule fluorescence analysis. In this review, we discuss how photonic methods bring innovative solutions for two essential questions: how to detect a single molecule in a highly concentrated solution, and how to enhance the faint optical signal emitted per(More)
Plasmonics and photonic crystals are two complementary approaches to tailor single-emitter fluorescence, using strong local field enhancements near metals on one hand and spatially extended photonic band structure effects on the other hand. Here, we explore the emergence of spontaneous emission control by finite-sized hexagonal arrays of nanoapertures(More)
A nanoscale layer of chromium or titanium is commonly used in plasmonic nanoantennas to firmly adhere a gold film to a glass substrate, yet the influence of this layer on the antenna performance is often ignored. As a result, the need for the use of potentially better materials is not widely recognized. Using a single aperture milled in a gold film with 120(More)
Experimental setup. The source consists of a CW laser diode (SDL 5412) at 780nm associated with an acousto-optic modulator, used to chop pulses with a duration 120ns (full width at half-maximum), at a repetition rate 800kHz. To reduce the excess noise, a grating-extended external cavity is used, and the beam is spatially filtered using a single mode fiber.(More)
Meeting the nanometre resolution promised by super-resolution microscopy techniques (pointillist: PALM, STORM, scanning: STED) requires stabilizing the sample drifts in real time during the whole acquisition process. Metal nanoparticles are excellent probes to track the lateral drifts as they provide crisp and photostable information. However, achieving(More)