Jérôme R. D. Soiné

Learn More
Adherent cells use forces at the cell-substrate interface to sense and respond to the physical properties of their environment. These cell forces can be measured with traction force microscopy which inverts the equations of elasticity theory to calculate them from the deformations of soft polymer substrates. We introduce a new type of traction force(More)
Disruption of the Golgi by brefeldin A (BFA) has been reported to block fast axonal transport and axonal growth. We used compartmented cultures of rat sympathetic neurons to investigate its effects on slow axonal transport. BFA (1 micro g/ml) applied to cell bodies/proximal axons for 6-20 h disrupted the Golgi, reversibly blocked axonal growth, and(More)
The measurement of cellular traction forces on soft elastic substrates has become a standard tool for many labs working on mechanobiology. Here we review the basic principles and different variants of this approach. In general, the extraction of the substrate displacement field from image data and the reconstruction procedure for the forces are closely(More)
Animal cells use traction forces to sense the mechanics and geometry of their environment. Measuring these traction forces requires a workflow combining cell experiments, image processing and force reconstruction based on elasticity theory. Such procedures have already been established mainly for planar substrates, in which case one can use the Green's(More)
  • 1