Jérôme Duclercq

Learn More
Plant development is governed by signaling molecules called phytohormones. Typically, in certain developmental processes more than 1 hormone is implicated and, thus, coordination of their overlapping activities is crucial for correct plant development. However, molecular mechanisms underlying the hormonal crosstalk are only poorly understood. Multiple(More)
Cytokinin is an important regulator of plant growth and development. In Arabidopsis thaliana, the two-component phosphorelay mediated through a family of histidine kinases and response regulators is recognized as the principal cytokinin signal transduction mechanism activating the complex transcriptional response to control various developmental processes.(More)
The architecture of a plant's root system, established postembryonically, results from both coordinated root growth and lateral root branching. The plant hormones auxin and cytokinin are central endogenous signaling molecules that regulate lateral root organogenesis positively and negatively, respectively. Tight control and mutual balance of their(More)
The plant hormones auxin and cytokinin mutually coordinate their activities to control various aspects of development [1-9], and their crosstalk occurs at multiple levels [10, 11]. Cytokinin-mediated modulation of auxin transport provides an efficient means to regulate auxin distribution in plant organs. Here, we demonstrate that cytokinin does not merely(More)
Phytohormones are important plant growth regulators that control many developmental processes, such as cell division, cell differentiation, organogenesis and morphogenesis. They regulate a multitude of apparently unrelated physiological processes, often with overlapping roles, and they mutually modulate their effects. These features imply important(More)
The puzzle piece-shaped Arabidopsis leaf pavement cells (PCs) with interdigitated lobes and indents is a good model system to investigate the mechanisms that coordinate cell polarity and shape formation within a tissue. Auxin has been shown to coordinate the interdigitation by activating ROP GTPase-dependent signaling pathways. To identify additional(More)
To sustain a lifelong ability to initiate organs, plants retain pools of undifferentiated cells with a preserved proliferation capacity. The root pericycle represents a unique tissue with conditional meristematic activity, and its tight control determines initiation of lateral organs. Here we show that the meristematic activity of the pericycle is(More)
Agnieszka Bielach,a,b Kate rina Podlešáková,c,d Peter Marhavý,a,b Jérôme Duclercq,a,b Candela Cuesta,a,b Bruno Müller,e Wim Grunewald,a,b Petr Tarkowski,c,f and Eva Benkováa,b,g,1 a Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Ghent, Belgium bDepartment of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent,(More)
  • 1