Jérôme Degallaix

Learn More
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the(More)
We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter(More)
This paper reports on an all-sky search for periodic gravitational waves from sources such as deformed isolated rapidly-spinning neutron stars. The analysis uses 840 hours of data from 66 days of the fifth LIGO science run (S5). The data was searched for quasi-monochromatic waves with frequencies f in the range from 50 Hz to 1500 Hz, with a linear frequency(More)
A detailed simulation of Advanced LIGO test mass optical cavities shows that parametric instabilities will excite 7 acoustic modes in each fused silica test mass, with parametric gain R up to 7 and only 1 acoustic mode with R approximately 2 for alternative sapphire test masses. Fine-tuning of the test mass radii of curvature causes the instabilities to(More)
In an experiment to simulate the conditions in high optical power advanced gravitational wave detectors, we show for the first time that the time evolution of strong thermal lenses follows the predicted infinite sum of exponentials (approximated by a double exponential), and that such lenses can be compensated using an intracavity compensation plate heated(More)
We present upper limits on the gravitational wave emission from 78 radio pulsars based on data from the third and fourth science runs of the LIGO and GEO 600 gravitational wave detectors. The data from both runs have been combined coherently to maximise sensitivity. For the first time pulsars within binary (or multiple) systems have been included in the(More)
We present a LIGO search for short-duration gravitational waves (GWs) associated with soft gamma ray repeater (SGR) bursts. This is the first search sensitive to neutron star f modes, usually considered the most efficient GW emitting modes. We find no evidence of GWs associated with any SGR burst in a sample consisting of the 27 Dec. 2004 giant flare from(More)
We searched for an anisotropic background of gravitational waves using data from the LIGO S4 science run and a method that is optimized for point sources. This is appropriate if, for example, the gravitational wave background is dominated by a small number of distinct astrophysical sources. No signal was seen. Upper limit maps were produced assuming two(More)
A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of(More)