Learn More
Models based on ordinary differential equations (ODE) are widespread tools for describing dynamical systems. In biomedical sciences, data from each subject can be sparse making difficult to precisely estimate individual parameters by standard non-linear regression but information can often be gained from between-subjects variability. This makes natural the(More)
Hepatitis C virus (HCV) is present in the host with multiple variants generated by its error prone RNA-dependent RNA polymerase. Little is known about the initial viral diversification and the viral life cycle processes that influence diversity. We studied the diversification of HCV during acute infection in 17 plasma donors, with frequent sampling early in(More)
The current paradigm for studying hepatitis C virus (HCV) dynamics in patients utilizes a standard viral dynamic model that keeps track of uninfected (target) cells, infected cells, and virus. The model does not account for the dynamics of intracellular viral replication, which is the major target of direct-acting antiviral agents (DAAs). Here we describe(More)
Hepatitis A virus (HAV) infection typically resolves within 4-7 wk but symptomatic relapse occurs in up to 20% of cases. Immune mechanisms that terminate acute HAV infection, and prevent a relapse of virus replication and liver disease, are unknown. Here, patterns of T cell immunity, virus replication, and hepatocellular injury were studied in two(More)
BACKGROUND Mathematical models are widely used for studying the dynamic of infectious agents such as hepatitis C virus (HCV). Most often, model parameters are estimated using standard least-square procedures for each individual. Hierarchical models have been proposed in such applications. However, another issue is the left-censoring (undetectable values) of(More)
  • 1