Learn More
The results presented herein demonstrate that apelin is expressed and secreted by both human and mouse adipocytes. Apelin mRNA levels in isolated adipocytes are close to other cell types present in white adipose tissue or other organs known to express apelin such as kidney, heart, and to a lesser extent brown adipose tissue. Apelin expression is increased(More)
Obesity, especially central obesity, is a hereditable trait associated with a high risk for development of diabetes and metabolic disorders. Combined gene expression analysis of adipocyte- and preadipocyte-containing fractions from intraabdominal and subcutaneous adipose tissue of mice revealed coordinated depot-specific differences in expression of(More)
Excess adipose tissue is associated with metabolic disease and reduced life span, whereas caloric restriction decreases these risks. Here we show that as mice age, there is downregulation of Dicer and miRNA processing in adipose tissue resulting in decreases of multiple miRNAs. A similar decline of Dicer with age is observed in C. elegans. This is prevented(More)
Environmental factors, such as the macronutrient composition of the diet, can have a profound impact on risk of diabetes and metabolic syndrome. In the present study we demonstrate how a single, simple dietary factor--leucine--can modify insulin resistance by acting on multiple tissues and at multiple levels of metabolism. Mice were placed on a normal or(More)
Obesity and type 2 diabetes are associated with mitochondrial dysfunction in adipose tissue, but the role for adipose tissue mitochondria in the development of these disorders is currently unknown. To understand the impact of adipose tissue mitochondria on whole-body metabolism, we have generated a mouse model with disruption of the mitochondrial(More)
OBJECTIVE To investigate how insulin sensitivity and glucose metabolism differ in adipocytes between different fat depots of male and female mice and how sex steroids contribute to these differences. RESEARCH DESIGN AND METHODS Adipocytes from intra-abdominal/perigonadal (PG) and subcutaneous (SC) adipose tissue from normal, castrated, or(More)
Insulin and insulin-like growth factor-1 (IGF-1) act on highly homologous receptors, yet in vivo elicit distinct effects on metabolism and growth. To investigate how the insulin and IGF-1 receptors exert specificity in their biological responses, we assessed their role in the regulation of gene expression using three experimental paradigms: 1) preadipocytes(More)
Conditional gene targeting has been extensively used for in vivo analysis of gene function in adipocyte cell biology but often with debate over the tissue specificity and the efficacy of inactivation. To directly compare the specificity and efficacy of different Cre lines in mediating adipocyte specific recombination, transgenic Cre lines driven by the(More)
A soluble form of semicarbazide-sensitive amine oxidase (SSAO) circulating in plasma is known to increase in type 1 and 2 diabetes. This cuproenzyme generates hydrogen peroxide, ammonia, and aldehydes when oxidizing circulating biogenic or exogenous amines. Based on the angiotoxicity of these products, inhibition of SSAO has been proposed to prevent(More)
In obesity, adipocytes distant from vasculature become hypoxic and dysfunctional. This hypoxic response is mediated by hypoxia-inducible factors (Hif1α, Hif2α, and Hif3α) and their obligate partner, Hif1β (Arnt). We show that mice lacking Hif1β in fat (FH1βKO) are lean, exhibit reduced adipocyte size, and are protected from age- and diet-induced glucose(More)