Learn More
Sir2 is a NAD+-dependent protein deacetylase that extends lifespan in yeast and worms. This study examines seven human proteins homologous to Sir2 (SIRT1 through SIRT7) for cellular localization, expression profiles, protein deacetylation activity, and effects on human cell lifespan. We found that: 1) three nuclear SIRT proteins (SIRT1, SIRT6, and SIRT7)(More)
Activation of telomerase is one of the rate-limiting steps in human cell immortalization and carcinogenesis Human telomerase is composed of at least two protein subunits and an RNA component. Regulation of expression of the catalytic subunit, human telomerase reverse transcriptase (hTERT), is suggested as the major determinant of the enzymatic activity. We(More)
Fifteen percent of lung cancer cases occur in never-smokers and show characteristics that are molecularly and clinically distinct from those in smokers. Epidermal growth factor receptor (EGFR) gene mutations, which are correlated with sensitivity to EGFR-tyrosine kinase inhibitors (EGFR-TKIs), are more frequent in never-smoker lung cancers. In this study,(More)
The cellular senescence program is controlled by multiple genetic pathways, one of which involves the regulation of telomerase and telomere shortening. The introduction of a normal human chromosome 3 into the human renal cell carcinoma cell line RCC23 caused repression of telomerase activity, progressive shortening of telomeres, and restoration of the(More)
Nutlin-3, an MDM2 inhibitor, activates p53, resulting in several types of cancer cells undergoing apoptosis. Although p53 is mutated or deleted in approximately 50% of all cancers, p53 is still functionally active in the other 50%. Consequently, nutlin-3 and similar drugs could be candidates for neoadjuvant therapy in cancers with a functional p53. Cellular(More)
The telomere-capping complex shelterin protects functional telomeres and prevents the initiation of unwanted DNA-damage-response pathways. At the end of cellular replicative lifespan, uncapped telomeres lose this protective mechanism and DNA-damage signalling pathways are triggered that activate p53 and thereby induce replicative senescence. Here, we(More)
Telomeres, which are the repeated sequences located on both ends of chromosomes in eukaryotes, are known to shorten with each cell division, and their eventual loss is thought to result in cellular senescence. Unlike normal somatic cells, most tumor cells show activation of telomerase, a ribonucleoprotein enzyme that stably maintains telomere length by(More)
Humans and animals undergo ageing, and although their primary cells undergo cellular senescence in culture, the relationship between these two processes is unclear. Here we show that gamma-H2AX foci (gamma-foci), which reveal DNA double-strand breaks (DSBs), accumulate in senescing human cell cultures and in ageing mice. They colocalize with DSB repair(More)
Malignant transformation from mortal, normal cells to immortal, cancer cells is generally associated with activation of telomerase and subsequent telomere maintenance. A major mechanism to regulate telomerase activity in human cells is transcriptional control of the telomerase catalytic subunit gene, human telomerase reverse transcriptase (hTERT). Several(More)
Hypoxia induces angiogenesis and glycolysis for cell growth and survival, and also leads to growth arrest and apoptosis. HIF-1alpha, a basic helix-loop-helix PAS transcription factor, acts as a master regulator of oxygen homeostasis by upregulating various genes under low oxygen tension. Although genetic studies have indicated the requirement of HIF-1alpha(More)