Izolda Gorgol

Learn More
A subgraph of an edge-colored graph is rainbow if all of its edges have different colors. For a graph H and a positive integer n, the anti-Ramsey number f (n, H) is the maximum number of colors in an edge-coloring of K n with no rainbow copy of H. The rainbow number rb(n, H) is the minimum number of colors such that any edge-coloring of K n with rb(n, H)(More)
For two given graphs G and H the planar Ramsey number PR(G, H) is the smallest integer n such that every planar graph F on n vertices either contains a copy of G or its complement contains a copy H. By studying the existence of subhamiltonian cycles in complements of sparse graphs, we determine all planar Ramsey numbers for pairs of cycles.