Learn More
Lysostaphin and the catalytic domain of LytM cleave pentaglycine crossbridges of Staphylococcus aureus peptidoglycan. The bacteriocin lysostaphin is secreted by Staphylococcus simulans biovar staphylolyticus and directed against the cell walls of competing S. aureus. LytM is produced by S. aureus as a latent autolysin and can be activated in vitro by the(More)
UNLABELLED Staphylococcus simulans biovar staphylolyticus lysostaphin efficiently cleaves Staphylococcus aureus cell walls. The protein is in late clinical trials as a topical anti-staphylococcal agent, and can be used to prevent staphylococcal growth on artificial surfaces. Moreover, the gene has been both stably engineered into and virally delivered to(More)
Photosystem II from transplastomic plants of Nicotiana tabacum with a hexahistidine tag at the N-terminal end of the PsbE subunit (α-chain of the cytochrome b(559)) was purified according to the protocol of Fey et al. (BBA 12:1501-1509, 2008). The protein sample was then subjected to two additional gel filtration runs in order to increase its homogeneity(More)
LytM is a Staphylococcus aureus autolysin and a homologue of the S. simulans lysostaphin. Both enzymes are members of M23 metallopeptidase family (MEROPS) comprising primarily bacterial peptidoglycan hydrolases. LytM occurs naturally in a latent form, but can be activated by cleavage of an inhibitory N-terminal proregion. Here, we present a 1.45 Å crystal(More)
  • 1