Learn More
Fluorophores that are fixed during image acquisition produce a diffraction pattern that is characteristic of the orientation of the fluorophore's underlying dipole. Fluorescence localization microscopy techniques such as PALM and STORM achieve super-resolution by applying Gaussian-based fitting algorithms to in-focus images of individual fluorophores; when(More)
We present a novel concept for optical spectroscopy called nonlinear correlation spectroscopy (NLCS). NLCS analyses coherent field fluctuations of the second and third harmonic light generated by diffusing nanoparticles. Particles based on noncentrosymmetric nonlinear materials such as KNbO(3) show a strong second as well as third harmonic response. The(More)
High Resolution Interference Microscopy (HRIM) is a technique that allows the characterization of amplitude and phase of electromagnetic wave-fields in the far-field with a spatial accuracy that corresponds to a few nanometers in the object plane. Emphasis is put on the precise determination of topological features in the wave-field, called phase(More)
We present theoretical and experimental results on switching and tuning of a two-dimensional photonic crystal resonant microcavity by means of a silicon AFM tip, probing the highly localized optical field in the vicinity of the cavity. On-off switching and modulation of the transmission signal in the kHz range is achieved by bringing an AFM tip onto the(More)
We present a combination of self-interference microscopy with lateral super-resolution microscopy and introduce a novel approach for localizing a single nano-emitter to within a few nanometers in all three dimensions over a large axial range. We demonstrate nanometer displacements of quantum dots placed on top of polymer bilayers that undergo swelling when(More)
We analyze the propagating optical modes in a Silicon membrane photonic crystal waveguide, based on subwavelength-resolution amplitude and phase measurements of the optical fields using a heterodyne near-field scanning optical microscope (H-NSOM). Fourier analysis of the experimentally obtained optical amplitude and phase data permits identification of the(More)
We present all-optical tuning and switching of a microcavity inside a two-dimensional photonic crystal waveguide. The photonic crystal structure is fabricated in silicon-on-insulator using complementary metal-oxide semiconductor processing techniques based on deep ultraviolet lithography and is completely buried in a silicon dioxide cladding that provides(More)
The measurement of tissue and cell oxygenation is important for understanding cell metabolism. We have addressed this problem with a novel optical technique, called triplet imaging, that exploits oxygen-induced triplet lifetime changes and is compatible with a variety of fluorophores. A modulated excitation of varying pulse widths allows the extraction of(More)
We apply heterodyne scanning near-field optical microscopy (SNOM) to observe with subwavelength resolution the amplitude and phase of optical fields propagating in several microfabricated waveguide devices operating around the 1.55 microm wavelength. Good agreement between the SNOM measurements and predicted optical mode propagation characteristics in(More)