Learn More
Domain adaptation allows knowledge from a source domain to be transferred to a different but related target domain. Intuitively, discovering a good feature representation across domains is crucial. In this paper, we first propose to find such a representation through a new learning method, transfer component analysis (TCA), for domain adaptation. TCA tries(More)
Standard SVM training has O(m 3) time and O(m 2) space complexities, where m is the training set size. It is thus computationally infeasible on very large data sets. By observing that practical SVM implementations only approximate the optimal solution by an iterative strategy, we scale up kernel methods by exploiting such " approximateness " in this paper.(More)
Sparse coding which encodes the original signal in a sparse signal space, has shown its state-of-the-art performance in the visual codebook generation and feature quan-tization process of BoW based image representation. However , in the feature quantization process of sparse coding, some similar local features may be quantized into different visual words of(More)
Maximum margin clustering (MMC) is a recent large margin unsupervised learning approach that has often outperformed conventional clustering methods. Computationally, it involves non-convex optimization and has to be relaxed to different semidefinite programs (SDP). However, SDP solvers are computationally very expensive and only small data sets can be(More)
In this paper, we address the problem of finding the pre-image of a feature vector in the feature space induced by a kernel. This is of central importance in some kernel applications, such as on using kernel principal component analysis (PCA) for image denoising. Unlike the traditional method in which relies on nonlinear optimization, our proposed method(More)
Sparse coding exhibits good performance in many computer vision applications. However, due to the overcomplete codebook and the independent coding process, the locality and the similarity among the instances to be encoded are lost. To preserve such locality and similarity information, we propose a Laplacian sparse coding (LSc) framework. By incorporating(More)
We propose a new learning method for heterogeneous domain adaptation (HDA), in which the data from the source domain and the target domain are represented by heterogeneous features with different dimensions. Using two different projection matrices, we first transform the data from two domains into a common subspace in order to measure the similarity between(More)
Low-rank matrix approximation is an effective tool in alleviating the memory and computational burdens of kernel methods and sampling, as the mainstream of such algorithms, has drawn considerable attention in both theory and practice. This paper presents detailed studies on the Nyström sampling scheme and in particular, an error analysis that directly(More)
Cross-domain learning methods have shown promising results by leveraging labeled patterns from auxiliary domains to learn a robust classifier for target domain, which has a limited number of labeled samples. To cope with the tremendous change of feature distribution between different domains in video concept detection, we propose a new cross-domain kernel(More)