Learn More
Opiate analgesics are widely used in the treatment of severe pain. Because of their importance in therapy, different strategies have been considered for making opiates more effective while curbing their liability to be abused. Although most opiates exert their analgesic effects primarily via mu opioid receptors, a number of studies have shown that delta(More)
Opiates such as morphine are the choice analgesic in the treatment of chronic pain. However their long-term use is limited because of the development of tolerance and dependence. Due to its importance in therapy, different strategies have been considered for making opiates such as morphine more effective, while curbing its liability to be abused. One such(More)
Several studies have described functional interactions between opioid and cannabinoid receptors; the underlying mechanism(s) have not been well explored. One possible mechanism is direct receptor-receptor interactions, as has been demonstrated for a number of G-protein-coupled receptors. In order to investigate interactions between opioid and cannabinoid(More)
G-protein-coupled receptors (GPCRs) have recently joined the list of cell surface receptors that dimerize. Dimerization has been shown to alter the ligand-binding, signaling, and trafficking properties of these receptors. Recent studies have shown that GPCRs heterodimerize with closely related members, resulting in the modulation of their function. In this(More)
The dopamine transporter (DAT) terminates dopamine (DA) neurotransmission by reuptake of DA into presynaptic neurons. Regulation of DA uptake by D(2) dopamine receptors (D(2)R) has been reported. The high affinity of DA and other DAT substrates for the D(2)R, however, has complicated investigation of the intracellular mechanisms mediating this effect. The(More)
The mu and delta types of opioid receptors form heteromers that exhibit pharmacological and functional properties distinct from those of homomeric receptors. To characterize these complexes in the brain, we generated antibodies that selectively recognize the mu-delta heteromer and blocked its in vitro signaling. With these antibodies, we showed that(More)
G-protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors in the human genome that respond to a plethora of signals, including neurotransmitters, peptide hormones, and odorants, to name a few. They couple to second messenger signaling cascade mechanisms via heterotrimeric G-proteins. Recently, many studies have revealed that(More)
Spinophilin, a dendritic spine-enriched scaffold protein, modulates synaptic transmission via multiple functions mediated by distinct domains of the protein. Here, we show that spinophilin is a key modulator of opiate action. Knockout of the spinophilin gene causes reduced sensitivity to the analgesic effects of morphine and early development of tolerance(More)
Opioid receptors belong to the family of G-protein-coupled receptors characterized by their seven transmembrane domains. The activation of these receptors by agonists such as morphine and endogenous opioid peptides leads to the activation of inhibitory G-proteins followed by a decrease in the levels of intracellular cAMP. Opioid receptor activation is also(More)
The study of the signaling pathways regulating neurite outgrowth in culture is important because of their potential role in neuronal differentiation in vivo. We have previously shown that the G alpha(o/i)-coupled CB1 cannabinoid receptor (CB1R) activates Rap1 to induce neurite outgrowth. G alpha(o/i) also activates the Src-Stat3 pathway. Here, we studied(More)