Ivo Kalajzic

Learn More
Adult mesenchymal progenitor cells have enormous potential for use in regenerative medicine. However, the true identity of the progenitors in vivo and their progeny has not been precisely defined. We hypothesize that cells expressing a smooth muscle α-actin promoter (αSMA)-directed Cre transgene represent mesenchymal progenitors of adult bone tissue. By(More)
Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt actin-myosin interactions, and on average, 65% of the single-cell-derived basal(More)
OBJECTIVES Neuropeptide Y (NPY) is a peptide involved in the regulation of appetite and energy homeostasis. Genetic data indicates that NPY decreases bone formation via central and peripheral activities. NPY is produced by various cell types including osteocytes and osteoblasts and there is evidence suggesting that peripheral NPY is important for regulation(More)
BACKGROUND The osteocyte is a type of cell that appears to be one of the key endocrine regulators of bone metabolism and a key responder to initiate bone formation and remodeling. Identifying the regulatory networks in osteocytes may lead to new therapies for osteoporosis and loss of bone. RESULTS Using microarray, we identified 269 genes over-expressed(More)
Unlike during embryogenesis, the identity of tissue resident progenitor cells that contribute to postnatal tendon growth and natural healing is poorly characterized. Therefore, we utilized 1) an inducible Cre driven by alpha smooth muscle actin (SMACreERT2), that identifies mesenchymal progenitors, 2) a constitutively active Cre driven by growth and(More)
Sex and genetic factors determine skeletal mass, and we tested whether bone histomorphometric parameters were sexually dimorphic in femurs from 1 to 6 month old C57BL/6 mice. Trabecular bone volume declined more rapidly in female mice than in male littermates because of enhanced bone resorption. Although bone formation was not different between sexes,(More)
Presently there is no clear evidence for the ability of mature osteogenic lineage cells to dedifferentiate. In order to identify and trace mature osteogenic lineage cells, we have utilized transgenic mouse models in which the dentin matrix protein 1 (Dmp1) promoter drives expression of GFP (active marker) or Cre recombinase (historic label) in(More)