Ivo Kalajzic

Learn More
Green fluorescent protein (GFP)-expressing transgenic mice were produced containing a 3.6-kilobase (kb; pOBCol3.6GFPtpz) and a 2.3-kb (pOBCol2.3GFPemd) rat type I collagen (Col1a1) promoter fragment. The 3.6-kb promoter directed strong expression of GFP messenger RNA (mRNA) to bone and isolated tail tendon and lower expression in nonosseous tissues. The(More)
Our previous studies have demonstrated that promoter-green fluorescent protein (GFP) transgenes can be used to identify and isolate populations of cells at the preosteoblastic stage (pOBCol3.6GFP) and at the mature osteoblastic stage (pOBCol2.3GFP) in living primary bone cell cultures. This strategy forms the basis for appreciating the cellular(More)
Osteocytes are the most abundant cells in bone yet are the most challenging to study because they are embedded in a mineralized matrix. We generated a clonal cell line called IDG-SW3 (for Immortomouse/Dmp1-GFP-SW3) from long-bone chips from mice carrying a Dmp1 promoter driving GFP crossed with the Immortomouse, which expresses a thermolabile SV40 large T(More)
We previously reported that deletion of the Fgf2 gene (Fgf2-/-) resulted in decreased bone mass in adult mice. This study examines the effect of haplo-insuffiency (Fgf2+/-) on bone loss in vertebrae from these mutant mice. Fgf2+/+ mice attained peak bone mass at 8-9 months of age. In contrast BMD was significantly reduced in vertebrae from adult (8-9)(More)
Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt actin-myosin interactions, and on average, 65% of the single-cell-derived basal(More)
The modular organization of the type I collagen promoter allows creation of promoter-reporter constructs with preferential activity in different type I collagen-producing tissues that might be useful to mark cells at different stages of osteoblastic differentiation. Primary marrow stromal cell (MSC) and mouse calvarial osteoblast (mCOB) cultures were(More)
Osteonectin, also known as SPARC (secreted protein acidic and rich in cysteine) or BM-40, is one of the most abundant noncollagenous proteins in bone. Analysis of osteonectin-null mice revealed that osteonectin is necessary for the maintenance of bone mass and normal remodeling, as osteonectin-null mice have decreased osteoblast number and bone formation(More)
The inherent heterogeneity of bone cells complicates the interpretation of microarray studies designed to identify genes highly associated with osteoblast differentiation. To overcome this problem, we have utilized Col1a1 promoter-green fluorescent protein transgenic mouse lines to isolate bone cells at distinct stages of osteoprogenitor maturation.(More)
Osteogenesis imperfecta (OI), or brittle bone disease, is a heritable disorder characterized by increased bone fragility. Four different types of the disease are commonly distinguished, ranging from a mild condition (type I) to a lethal one (type II). Types III and IV are the severe forms surviving the neonatal period. In most cases, there is a reduction in(More)
Identification of a reliable marker of skeletal precursor cells within calcified and soft tissues remains a major challenge for the field. To address this, we used a transgenic model in which osteoblasts can be eliminated by pharmacological treatment. Following osteoblast ablation a dramatic increase in a population of alpha-smooth muscle actin (alpha-SMA)(More)