Learn More
Collagen type I is the most abundant structural protein in tendon, skin and bone, and largely determines the mechanical behaviour of these connective tissues. To obtain a better understanding of the relationship between structure and mechanical properties, tensile tests and synchrotron X-ray scattering have been carried out simultaneously, correlating the(More)
Collagen type I is among the most important stress-carrying protein structures in mammals. Despite their importance for the outstanding mechanical properties of this tissue, there is still a lack of understanding of the processes that lead to the specific shape of the stress-strain curve of collagen. Recent in situ synchrotron X-ray scattering experiments(More)
Bone and cartilage consist of different organic matrices, which can both be mineralized by the deposition of nano-sized calcium phosphate particles. We have studied these mineral particles in the mineralized cartilage layer between bone and different types of cartilage (bone/articular cartilage, bone/intervertebral disk, and bone/growth cartilage) of(More)
The outstanding mechanical properties of biological tissues such as wood or bone are mainly due to their hierarchical structure and to their optimization at all levels of hierarchy. It is therefore essential to characterize the structure at all levels to understand the complex behavior of such tissues. Structures down to the micrometer level are accessible(More)
PETRA III, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany, Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, Brandenbug 14476, Germany, Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité – Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin 13353,(More)
A simple explanation is given for the low-temperature density minimum of water confined within cylindrical pores of ordered nanoporous materials of different pore size. The experimental evidence is based on combined data from in-situ small-angle scattering of X-rays (SAXS) and neutrons (SANS), corroborated by additional wide-angle X-ray scattering (WAXS).(More)
Recent studies of Parkinson's disease indicate that dorsal motor nucleus of nerve vagus is one of the earliest brain areas affected by alpha-synuclein and Lewy bodies pathology. The influence of electrical stimulation of vagus nerve on elemental composition of dopamine related brain structures in rats is investigated. Synchrotron radiation based X-ray(More)
The micrometer level spatial distribution of the size, shape, and orientation of mineral crystallites in the calcifying matrix of tendons near the edge of the mineralizing front was investigated by scanning small angle X-ray scattering using synchrotron X-ray radiation. Using a special microbeam arrangement enabling 20 µm beam resolution and short(More)
A new versatile tool, combining Shear Force Microscopy and X-Ray Spectroscopy was designed and constructed to obtain simultaneously surface topography and chemical mapping. Using a sharp optical fiber as microscope probe, it is possible to collect locally the visible luminescence of the sample. Results of tests on ZnO and on ZnWO4 thin layers are in perfect(More)
We observed that diffuse interfaces sharpen rather than broaden in completely miscible ideal binary systems. This is shown in situ during heat treatments at gradually increasing temperatures by scattering of synchrotron radiation in coherent Mo/V multilayers containing initially diffuse interfaces. This effect provides a useful tool for the improvement of(More)