Learn More
The waters of the Cres-Lošinj archipelago are subject to intense boat traffic related to the high number of leisure boats frequenting this area during the summer tourist season. Boat noise dominates the acoustic environment of the local bottlenose dolphin (Tursiops truncatus) population. This study investigates the spatial and temporal change in the(More)
[1] A winter oceanographic field experiment provided an opportunity to examine the atmospheric marine conditions over the northern Adriatic. Mean February winds are from a northeasterly direction over most of the Adriatic and a more northerly direction along the western coast. Wind speeds are fastest in jets over the NE coast during bora events and weakest(More)
The paper documents resonant coupling between an air pressure travelling disturbance and the Middle Adriatic coastal waters, examined theoretically by using a barotropic numerical model and then comparing the model to the observed events. The model is forced first with a cosine and box air pressure disturbance travelling with a constant speed and direction(More)
A series of tsunami-like waves of non-seismic origin struck several southern European countries during the period of 23 to 27 June 2014. The event caused considerable damage from Spain to Ukraine. Here, we show that these waves were long-period ocean oscillations known as meteorological tsunamis which are generated by intense small-scale air pressure(More)
Temporal and spatial characteristics of the resonant coupling between travelling air pressure disturbances and the middle Adriatic coastal waters are examined using a barotropic numerical model for a one year period (July 2000–July 2001). The model is forced by the travelling air pressure disturbances reconstructed from the 2-min resolution air pressure(More)
The paper documents a concept of ocean forecasting system for ocean surface currents based on self-organizing map (SOM) trained by high-resolution numerical weather prediction (NWP) model and high-frequency (HF) radar data. Wind and surface currents data from the northern Adriatic coastal area were used in a 6-month long training phase to obtain SOM(More)
An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ(More)
Present investigations of sea level extremes are based on hourly data measured at coastal tide gauges. The use of hourly data restricts existing global and regional analyses to periods larger than 2 h. However, a number of processes occur at minute timescales, of which the most ruinous are tsunamis. Meteotsunamis, hazardous nonseismic waves that occur at(More)