Ivica Kostović

Learn More
The cytological organization and the timetable of emergence and dissolution of the transient subplate zone subjacent to the developing visual and somatosensory cortex were studied in a series of human and monkey fetal brains. Cerebral walls processed with Nissl, Golgi, electron-microscopic, and histochemical methods show that this zone consists of migratory(More)
The fine structure, synaptic relationships, distribution and time of origin of interstitial neurons situated within the white matter subjacent to the visual, somatosensory and motor cortices were studied in the human and monkey telencephalon. The analysis was carried out on Nissl-stained serial sections, rapid Golgi impregnations, by acetylcholinesterase(More)
The major mechanism for generating diversity of neuronal connections beyond their genetic determination is the activity-dependent stabilization and selective elimination of the initially overproduced synapses [Changeux JP, Danchin A (1976) Nature 264:705-712]. The largest number of supranumerary synapses has been recorded in the cerebral cortex of human and(More)
The developing human cerebrum displays age-specific changes in its patterns of lamination. Among these, the subplate zone is the most prominent transient compartment because growing major afferent systems temporarily reside in this zone, establish synapses and take part in cellular interactions that are crucial for subsequent cortical development. We(More)
We have correlated data on neuroanatomical organization and magnetic resonance imaging of transient fetal zones shown to contain connectivity elements (growing axons, synapses, dendrites). In the fetal phase, afferent fibres 'wait' within the subplate zone which is the most prominent lamina on histological and magnetic resonance images and is a substrate of(More)
UNLABELLED The aim of this review is to present clinically relevant data on prenatal development of thalamocortical connections in the human brain. The analysis is based on extensive Zagreb Neuroembryological Collection, including more than 500 prenatal human brains stained with various classical neurohistological, as well as modern histochemical and(More)
In order to observe changes owing to aging and Alzheimer's disease (AD) in the volumes of subdivisions of the hippocampus and the number of neurons of the hippocampal formation, 18 normal brains from subjects who died of nonneurological causes and had no history of long-term illness or dementia (ten of these brains comprised the aged control group) and 13(More)
The postnatal development and lifespan alterations in basal dendrites of large layer IIIC and layer V pyramidal neurons were quantitatively studied. Both classes of neurons were characterized by rapid dendritic growth during the first postnatal months. At birth, layer V pyramidal neurons had larger and more complex dendritic trees than those of layer IIIC;(More)
In this review, we demonstrate the developmental appearance, structural features, and reorganization of transient cerebral zones and structures in the human fetal brain using a correlative histological and MRI analysis. The analysis of postmortem aldehyde-fixed specimens (age range: 10 postovulatory weeks to term) revealed that, at 10 postovulatory weeks,(More)
The development of the cerebral cortex, white matter microstructure, and the basal ganglia can be well characterized using structural magnetic resonance imaging (MRI). In this review, we analyzed structural in vitro MRI studies of transient cellular cerebral zones that are sites of neurogenetic events (proliferation, migration, cell aggregation, growth of(More)