Learn More
(1)H NMR metabolic profiling of urine, serum and plasma has been used to monitor the impact of the pre-analytical steps on the sample quality and stability in order to propose standard operating procedures (SOPs) for deposition in biobanks. We analyzed the quality of serum and plasma samples as a function of the elapsed time (t = 0-4 h) between blood(More)
MIA40 has a key role in oxidative protein folding in the mitochondrial intermembrane space. We present the solution structure of human MIA40 and its mechanism as a catalyst of oxidative folding. MIA40 has a 66-residue folded domain made of an alpha-helical hairpin core stabilized by two structural disulfides and a rigid N-terminal lid, with a characteristic(More)
Cellular systems allow transition-metal ions to reach or leave the cell or intracellular locations through metal transfer between proteins. By coupling mutagenesis and advanced NMR experiments, we structurally characterized the adduct between the copper chaperone Atx1 and the first copper(I)-binding domain of the Ccc2 ATPase. Copper was required for the(More)
The amyloid fibrils of beta-amyloid (Aβ) peptides play important roles in the pathology of Alzheimer's disease. Comprehensive solid-state NMR (SSNMR) structural studies on uniformly isotope-labeled Aβ assemblies have been hampered for a long time by sample heterogeneity and low spectral resolution. In this work, SSNMR studies on well-ordered fibril samples(More)
Human Wilson protein is a copper-transporting ATPase located in the secretory pathway possessing six N-terminal metal-binding domains. Here we focus on the function of the metal-binding domains closest to the vesicular portion of the copper pump, i.e., domain 4 (WLN4), and a construct of domains 5 and 6 (WLN5-6). For comparison purposes, some experiments(More)
A sequence with a high homology (39% residue identity) with that of the copper-transport CopZ protein from Enterococcus hirae and with the same MXCXXC metal-binding motif has been identified in the genome of Bacillus subtilis, and the corresponding protein has been expressed. The protein, constituted by 73 amino acids, does bind copper(I) under reducing(More)
Metalloproteins are proteins capable of binding one or more metal ions, which may be required for their biological function, or for regulation of their activities or for structural purposes. Genome sequencing projects have provided a huge number of protein primary sequences, but, even though several different elaborate analyses and annotations have been(More)
Several proteins of the mitochondrial intermembrane space are targeted by internal targeting signals. A class of such proteins with α-helical hairpin structure bridged by two intramolecular disulfides is trapped by a Mia40-dependent oxidative process. Here, we describe the oxidative folding mechanism underpinning this process by an exhaustive structural(More)
Celiac disease (CD) is a multifactorial disorder involving genetic and environmental factors, thus, having great potential impact on metabolism. This study aims at defining the metabolic signature of CD through Nuclear Magnetic Resonance (NMR) of urine and serum samples of CD patients. Thirty-four CD patients at diagnosis and 34 healthy controls were(More)
Zinc, a metal ion that functions in a wide variety of catalytic and structural sites in metalloproteins, is shown here to adopt a novel coordination environment in the Escherichia coli transport protein ZntA. The ZntA protein is a P-type ATPase that pumps zinc out of the cytoplasm and into the periplasm. It is physiologically selective for Zn(II) and(More)