Ivana von Metzler

Learn More
OBJECTIVES Mantle cell lymphoma (MCL) is an incurable B cell lymphoma, and novel treatment strategies are urgently needed. We evaluated the effects of combined treatment with the proteasome inhibitor bortezomib and the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA) on MCL. Bortezomib acts by targeting the proteasome, and--among(More)
Proteasome inhibitors and histone deacetylase (HDAC) inhibitors are novel targeted therapies being evaluated in clinical trials for cutaneous T-cell lymphoma (CTCL). However, data in regard to tumor biology are limited with these agents. In the present study we analyzed the effects of the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) and the(More)
Interactions of myeloma cells with the bone marrow microenvironment lead to enhanced osteoclast recruitment and impaired osteoblast activity. Recent evidence revealed that the proteasome inhibitor bortezomib stimulates osteoblast differentiation, but the mechanisms are not fully elucidated. We hypothesised that bortezomib could influence osteoblastic(More)
Heat shock protein 90 (HSP90) binds and stabilizes numerous proteins and kinases essential for myeloma cell survival and proliferation. We and others have recently demonstrated that inhibition of HSP90 by small molecular mass inhibitors induces cell death in multiple myeloma (MM). However, some of the HSP90 inhibitors involved in early clinical trials have(More)
Formation of osteolytic lesions is a key pathophysiological feature in multiple myeloma and results from the interaction of myeloma cells with the bone marrow microenvironment. Matrix metalloproteinases (MMPs) and plasmin may be involved in bone destruction, but their precise roles have not been clarified. Furthermore, the impact of osteoblast-related(More)
Heat shock protein 90 (HSP90) is a promising target for tumor therapy. The novel HSP90 inhibitor NVP-AUY922 has preclinical activity in multiple myeloma, however, little is known about effective combination partners to design clinical studies. Multiple myeloma cell lines, OPM-2, RPMI-8226, U-266, LP-1, MM1.S, and primary myeloma cells were exposed to(More)
Multiple myeloma is a malignancy of terminally differentiated plasma cells and is incurable in the majority of the patients. Thus, novel effective treatment regimens are urgently needed. In this study, we examined the effects of co-treatment with proteasome-inhibitor bortezomib and topoisomerase II inhibitor etoposide in multiple myeloma cells lines OPM-2,(More)
BACKGROUND The ubiquitin-proteasome system has become a promising novel molecular target in cancer due to its critical role in cellular protein degradation, its interaction with cell cycle and apoptosis regulation and its unique mechanism of action. OBJECTIVE This review focuses both on preclinical results and on data from clinical trials with proteasome(More)
A significant increase in infections caused by multidrug-resistant organisms (MDRO) has been observed in recent years, resulting in an increase of mortality in all fields of health care. Hematological patients are particularly affected by MDRO infections because of disease- and therapy-related immunosuppression. To determine the impact of colonization with(More)
Bone destruction is one of the most debilitating manifestations of multiple myeloma (MM) and results from the interaction of myeloma cells with the bone marrow microenvironment. Within the bone marrow, the disturbed balance between osteoclasts and osteoblasts is important for the development of lytic lesions. However, the mechanisms behind myeloma-mediated(More)