Learn More
INTRODUCTION RNA quality and integrity are critical for many studies in plant molecular biology. High-quality RNA extraction from grapevine and other woody plants is problematic due to the presence of polysaccharides, polyphenolics and other compounds that bind or co-precipitate with the RNA. OBJECTIVE To develop an optimised cetyltrimethylammonium(More)
Different cultivars of Vitis vinifera vary in their potential to form embryogenic tissues. The WUSCHEL (WUS)-related homeobox (WOX) genes have been shown to play an important role in coordinating the gene transcription involved in the early phases of embryogenesis. The expression dynamics of 12 VvWOX genes present in the V. vinifera genome in embryogenic(More)
We functionally characterized the grape (Vitis vinifera) VvPIP2;4N (for Plasma membrane Intrinsic Protein) aquaporin gene. Expression of VvPIP2;4N in Xenopus laevis oocytes increased their swelling rate 54-fold. Northern blot and quantitative reverse transcription-polymerase chain reaction analyses showed that VvPIP2;4N is the most expressed PIP2 gene in(More)
Eight transgenic grapevine lines transformed with the coat protein gene of Grapevine fanleaf virus (GFLV-CP) were analyzed for a correlation between transgene expression, siRNAs production and DNA methylation. Bisulphite genome sequencing was used for a comprehensive analysis of DNA methylation. Methylated cytosine residues of CpG and CpNpG sites were(More)
Seedless grapes are greatly appreciated for fresh and dry fruit consumption. Parthenocarpy and stenospermocarpy have been described as the main phenomena responsible for seedlessness in Vitis vinifera. However, the key genes underpinning molecular and cellular processes that play a significant role in seed development are not well characterized. To identify(More)
ABSTRACT A multiplex reverse transcription-polymerase chain reaction (mRT-PCR) was developed for simultaneous detection of nine grapevine viruses: Arabis mosaic virus, Grapevine fanleaf virus, Grapevine virus A, Grapevine virus B, Rupestris stem pitting-associated virus, Grapevine fleck virus, Grapevine leafroll-associated virus-1, -2, and -3, in(More)
Genetic transformation has emerged as a powerful tool for genetic improvement of fruit trees hindered by their reproductive biology and their high levels of heterozygosity. For years, genetic engineering of fruit trees has focussed principally on enhancing disease resistance (against viruses, fungi, and bacteria), although there are few examples of field(More)
Grape berries of Muscat cultivars (Vitis vinifera L.) contain high levels of monoterpenols and exhibit a distinct aroma related to this composition of volatiles. A structural gene of the plastidial methyl-erythritol-phosphate (MEP) pathway, 1-deoxy-D-xylulose 5-phosphate synthase (VvDXS), was recently suggested as a candidate gene for this trait, having(More)
A collection of 127 putatively transgenic individuals of Vitis vinifera cv. Russalka was characterized by PCR and Southern hybridization. Six different constructs containing the neomycin phosphotransferase (nptII) marker gene and sequences of the Grapevine Fanleaf Virus Coat Protein (GFLV CP) gene including non-translatable and truncated forms were(More)
The Grapevine FanLeaf Virus-Coat Protein (GFLV CP) gene was inserted through Agrobacterium-mediated transformation in Vitis vinifera "Nebbiolo", "Lumassina" and "Blaufränkisch". Two plasmids were used: pGA-CP+ (full-length GFLV CP gene with an introduced start codon) and pGA-AS (same gene in antisense orientation). Forty-three transgenic lines were(More)