Ivan Zahradník

Learn More
The local control concept of excitation-contraction coupling in the heart postulates that the activity of the sarcoplasmic reticulum ryanodine receptor channels (RyR) is controlled by Ca(2+) entry through adjoining sarcolemmal single dihydropyridine receptor channels (DHPRs). One unverified premise of this hypothesis is that the RyR must be fast enough to(More)
We have used whole-cell and perforated patches to study ionic currents induced by hypotonic extracellular solutions (HTS, 185 mOsm instead of 290 mOsm) in endothelial cells from human umbilical veins. These currents activated within 30-50 s after application of HTS, reached a maximum value after approximately 50-150 s and recovered completely after(More)
Single channel activity of the cardiac ryanodine-sensitive calcium-release channel in planar lipid membranes was studied in order to elucidate the calcium-dependent mechanism of its steady-state behavior. The single channel kinetics, observed with Cs+ as the charge carrier at different activating (cis) Ca2+ concentrations in the absence of ATP and Mg2+,(More)
Mg2+, an important constituent of the intracellular milieu in cardiac myocytes, is known to inhibit ryanodine receptor (RyR) Ca2+ release channels by competing with Ca2+ at the cytosolic activation sites of the channel. However, the significance of this competition for local, dynamic Ca2+-signaling processes thought to govern cardiac excitation-contraction(More)
Despite its importance and abundance of experimental data, the molecular mechanism of RyR2 activation by calcium is poorly understood. Recent experimental studies involving coexpression of wild-type (WT) RyR2 together with a RyR2 mutant deficient in calcium-dependent activation (Li, P., and S.R. Chen. 2001. J. Gen. Physiol. 118:33-44) revealed large(More)
In mammalian cardiac myocytes, calcium released into the dyadic space rapidly inactivates calcium current (ICa). We used this Ca2+ release-dependent inactivation (RDI) of ICa as a local probe of sarcoplasmic reticulum Ca2+ release activation. In whole cell patch-clamped rat ventricular myocytes, Ca2+ entry induced by short prepulses from -50 mV to positive(More)
A Markovian model of the cardiac Ca release channel, based on experimental single-channel gating data, was constructed to understand the transient nature of Ca release. The rate constants for a minimal gating scheme with one Ca-free resting state, and with two open and three closed states with one bound Ca2+, were optimized to simulate the following(More)
Antidepressants inhibit many membrane receptors and ionic channels, including the L-type calcium channel. Here, we investigated the inhibition of calcium current (I(Ca)) by antidepressants in enzymatically isolated rat ventricular myocytes using whole-cell patch clamp. The molecular mechanism of inhibition was studied by comparing the voltage and state(More)
Cytosolic calcium concentration in resting cardiac myocytes locally fluctuates as a result of spontaneous microscopic Ca(2+) releases or abruptly rises as a result of an external trigger. These processes, observed as calcium sparks, are fundamental for proper function of cardiac muscle. In this study, we analyze how the characteristics of spontaneous and(More)
Phenylalkylamines, benzothiazepines, and dihydropyridines bind noncompetitively to the L-type calcium channel. The molecular mechanisms of this interaction were investigated in enzymatically isolated rat ventricular myocytes using the whole-cell patch-clamp technique. When applied alone, felodipine, verapamil, and diltiazem inhibited the L-type calcium(More)