Learn More
—We investigate the polarization evolution for both signal and noise in two 107-km recirculating loops with polarization dependent loss per round-trip of 0.35 dB and less than 0.1 dB, respectively. When the system is optimized, in the first case, both signal and noise are polarized, while in the second case, the signal tends to depolarize due to the noise.(More)
We developed an importance sampling based method that significantly speeds up the calculation of the diffusive reflectance due to ballistic and to quasi-ballistic components of photons scattered in turbid media: Class I diffusive reflectance. These components of scattered photons make up the signal in optical coherence tomography (OCT) imaging. We show that(More)
—We analyze polarization mode dispersion (PMD) em-ulators comprised of a small number of sections of polarization-maintaining fibers with polarization scattering at the beginning of each section. Unlike previously studied devices, these emulators allow the emulation of a whole ensemble of fibers. We derive analytical expressions and determine two main(More)
We present experimental and numerical results for nonlinear polarization evolution of femtosecond pulses during propagation in microstructure fiber. Numerical modeling shows that fiber dispersion permits a long interaction length between the components polarized along the two principal axes, thereby enhancing the effective nonlinear polarization evolution(More)
—We evaluate the performance of single-section and three-section polarization-mode-dispersion (PMD) compensators using the biasing Monte Carlo methods of importance sampling (IS) and multicanonical Monte Carlo (MMC). We show that standard IS that biases only first-order PMD is insufficient to compute penalties in most compensated systems, while multiple IS(More)
—This paper shows how to estimate errors in multi-canonical Monte Carlo (MMC) simulations using a transition-matrix method. MMC is a biasing Monte Carlo technique that allows one to compute the probability of rare events, such as the outage probability in optical-fiber communication systems. Since MMC is a Monte Carlo technique, it is subject to statistical(More)
We show how to efficiently calculate the signal in optical coherence tomography (OCT) systems due to the ballistic photons, the quasi-ballistic photons, and the photons that undergo multiple diffusive scattering using Monte Carlo simulations with importance sampling. This method enables the calculation of these three components of the OCT signal with less(More)
—We propose a technique that uses Monte Carlo simulations with importance sampling and a reduced Stokes model to compute the probability density function of the factor and the outage probability for a channel in a long-haul wavelength-division -multiplexed optical-fiber transmission system due to the combination of polarization mode dispersion, polarization(More)