Ivan Prokudin

Learn More
Developmental eye diseases, including cataract/microcornea, Peters anomaly and coloboma/microphthalmia/anophthalmia, are caused by mutations encoding many different signalling and structural proteins in the developing eye. All modes of Mendelian inheritance occur and many are sporadic cases, so provision of accurate recurrence risk information for families(More)
Correct morphogenesis and differentiation are critical in development and maintenance of the lens, which is a classic model system for epithelial development and disease. Through germline genomic analyses in patients with lens and eye abnormalities, we discovered functional mutations in the Signal Induced Proliferation Associated 1 Like 3 (SIPA1L3) gene,(More)
Congenital cataracts are a significant cause of lifelong visual loss. They may be isolated or associated with microcornea, microphthalmia, anterior segment dysgenesis (ASD) and glaucoma, and there can be syndromic associations. Genetic diagnosis is challenging due to marked genetic heterogeneity. In this study, next-generation sequencing (NGS) of 32(More)
Delineating candidate genes at the chromosomal breakpoint regions in the apparently balanced chromosome rearrangements (ABCR) has been shown to be more effective with the emergence of next-generation sequencing (NGS) technologies. We employed a large-insert (7-11 kb) paired-end tag sequencing technology (DNA-PET) to systematically analyze genome of four(More)
BACKGROUND Leber congenital amaurosis (LCA) is a severe form of retinal dystrophy with marked underlying genetic heterogeneity. Until recently, allele-specific assays and Sanger sequencing of targeted segments were the only available approaches for attempted genetic diagnosis in this condition. A broader next-generation sequencing (NGS) strategy, such as(More)
BACKGROUND Several retinal dystrophies are associated with syndromic features including such conditions as Bardet-Biedl and Joubert syndromes. Cohen syndrome is an autosomal recessive disorder associated with multiple clinical manifestations including developmental delay, acquired microcephaly, myopia, pigmentary retinopathy, joint hypermobility, truncal(More)
This project expands the disease spectrum for mutations in GJA8 to include total sclerocornea, rudimentary lenses and microphthalmia, in addition to this gene's previously known role in isolated congenital cataracts. Ophthalmic findings revealed bilateral total sclerocornea in 3 probands, with small abnormal lenses in 2 of the cases, and cataracts and(More)
  • 1