Ivan Powis

Learn More
An electron imaging technique has been used to study the full angular distribution of valence photoelectrons produced from enantiomerically pure molecular beams of camphor when these are photoionized with circularly polarized light. In addition to the familiar beta parameter, this provides a new chiral term, taking the form of an additional cosine function(More)
We have measured the photoelectron circular dichroism (PECD) of single enantiomers of endoborneol in the photon region from 9.9 to 23.6 eV by combining circularly polarized synchrotron radiation and a velocity map imaging technique. A photoelectron spectrum and the state-selected fragmentation curves of this terpene were also recorded. Unlike previous case(More)
Photoionization of the chiral molecule glycidol has been investigated in the valence region. Photoelectron circular dichroism (PECD) curves have been obtained at various photon energies by using circularly polarized VUV synchrotron radiation and a velocity map imaging technique to record angle-resolved photoelectron spectra (PES). The measured chiral(More)
In this Perspective we discuss photoelectron circular dichroism (PECD), a relatively novel technique that can detect chiral molecules with high sensitivity. PECD has an enantiomeric sensitivity of typically 1-10%, which is two to three orders of magnitude larger than that of the widely employed technique of circular dichroism (CD). In PECD a chiral molecule(More)
Photoelectron circular dichroism (PECD) manifests itself as an intense forward/backward asymmetry in the angular distribution of photoelectrons produced from randomly-oriented enantiomers by photoionization with circularly-polarized light (CPL). As a sensitive probe of both photoionization dynamics and of the chiral molecular potential, PECD attracts much(More)
Electron-nuclei coupling accompanying excitation and relaxation processes is a fascinating phenomenon in molecular dynamics. A striking and unexpected example of such coupling is presented here in the context of photoelectron circular dichroism measurements on randomly oriented, chiral methyloxirane molecules, unaffected by any continuum resonance. Here, we(More)
Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron(More)
A pronounced vibrational state dependence of photoelectron angular distributions observed in chiral photoionization experiments is explored using a simple, yet realistic, theoretical model based upon the transiently chiral molecule H2O2. The adiabatic approximation is used to separate vibrational and electronic wavefunctions. The full ionization matrix(More)
The photoionization of enantiomerically pure epichlorohydrin (C(3)H(5)OCl) has been studied using linearly and circularly polarized vacuum ultraviolet synchrotron radiation. The threshold photoelectron spectrum was recorded and the first three bands assigned using molecular orbital calculations for the expected conformers, although uncertain experimental(More)
Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified(More)