Learn More
Due to strong electric fields at the surface, the absorption and scattering of electromagnetic radiation by noble metal nanoparticles are strongly enhanced. These unique properties provide the potential of designing novel optically active reagents for simultaneous molecular imaging and photothermal cancer therapy. It is desirable to use agents that are(More)
Gold nanoparticles with unique optical properties may be useful as biosensors in living whole cells. Using a simple and inexpensive technique, we recorded surface plasmon resonance (SPR) scattering images and SPR absorption spectra from both colloidal gold nanoparticles and from gold nanoparticles conjugated to monoclonal anti-epidermal growth factor(More)
Noble metal nanostructures attract much interest because of their unique properties, including large optical field enhancements resulting in the strong scattering and absorption of light. The enhancement in the optical and photothermal properties of noble metal nanoparticles arises from resonant oscillation of their free electrons in the presence of light,(More)
The selection of nanoparticles for achieving efficient contrast for biological and cell imaging applications, as well as for photothermal therapeutic applications, is based on the optical properties of the nanoparticles. We use Mie theory and discrete dipole approximation method to calculate absorption and scattering efficiencies and optical resonance(More)
Efficient conversion of strongly absorbed light by plasmonic gold nanoparticles to heat energy and their easy bioconjugation suggest their use as selective photothermal agents in molecular cancer cell targeting. Two oral squamous carcinoma cell lines (HSC 313 and HOC 3 Clone 8) and one benign epithelial cell line (HaCaT) were incubated with anti-epithelial(More)
Recent years have seen tremendous progress in the design and study of nanomaterials geared towards biological and biomedical applications, most notable among these being the noble metal nanoparticles. In this review, we outline the surface-plasmon resonance-enhanced optical properties of colloidal gold nanoparticles directed towards recent biomedical(More)
BACKGROUND AND OBJECTIVE Laser photothermal therapy (PTT) is practiced at the moment using short laser pulses. The use of plasmonic nanoparticles as contrast agents can decrease the laser energy by using the optical property of the nanoparticles and improve the tumor selectivity by the molecular probes on the particle surface. In this study, we aim at(More)
BACKGROUND Clival chordomas frequently recur because of their location and invasiveness. OBJECTIVE To investigate clinical, operative, and anatomic factors associated with clival chordoma recurrence. METHODS Retrospective review of clival chordomas treated at our center from 1993 to 2013. RESULTS Fifty patients (56% male) with median age of 59 years(More)
This chapter describes the application of gold nanorods in biomedical imaging and photothermal therapy. The photothermal properties of gold nanorods are summarized and the synthesis as well as antibody conjugation of gold nanorods is outlined. Biomedical applications of gold nanorods include cancer imaging using their enhanced scattering property and(More)
Surgical approaches to the craniovertebral junction (CVJ) can result in dysfunction of the upper aerodigestive tract. However, few data are available regarding the incidence of complications after such surgery. Evaluation of a CVJ lesion for treatment must establish the biology, transverse and longitudinal extent of the lesion, and the preoperative and(More)