Learn More
Extensive research has been carried out on the performance investigation of two-dimensional wavelength hopping/time spreading optical code division multiple access (OCDMA) codes, which are based on picosecond multiwavelength pulses under the influence of temperature variations resulting from changing environmental conditions. Equations have been derived to(More)
We present an analysis of the optical loop mirror in which a nonlinear optical element is asymmetrically placed in the loop. This analysis provides a general framework for the operation of a recently invented ultrafast all-optical switch known as the terahertz optical asymmetric demultiplexer. We show that a loop with small asymmetry, such as that used in(More)
In a fast changing world where information technology drives economic prosperity, the number of data centres has grown significantly in the past few years. These data centres require large amount of energy in order to meet up with increasing demands. An overview of energy efficient optical interconnects as a means of reducing energy consumption without(More)
A novel optical switch based on cascading two terahertz optical asymmetric demultiplexers (TOAD) is presented. By utilizing the sharp edge of the asymmetric TOAD switching window profile, two TOAD switching windows are overlapped to produce a narrower aggregate switching window, not limited by the pulse propagation time in the SOA of the TOAD. Simulations(More)
A novel re-timing, re-amplifying, and re-shaping (3R) regeneration system is proposed to process multiple WDM (wavelengthdivision-multiplexing) channels simultaneously. Its re-timing capability is investigated by both simulation and experiment with polarizationscrambling method at 10 Gb/s bit rate. Jitter tolerance up to 0.8 UIpp is demonstrated with BER(More)
Since its emergence the internet has been a significant part of today's modern living. Defined by its interconnections and routing policies, it has fuelled increased demands for provisioning of new more advanced services that are able to dynamically react to changes within the network. These services however, lead to enormous energy consumption in contrast(More)
We present a theoretical analysis of recently demonstrated ultrafast all-optical interferometric switching devices (based on Sagnac and Mach-Zehnder interferometers) that use a large optical nonlinearity in a resonant regime. These devices achieve ~10-ps switching windows and do not require high-energy optical control pulses. We theoretically analyze and(More)
Beating noise in narrow-linewidth erbium-doped fiber ring lasers puts severe limitations on applications of the lasers. We demonstrate the suppression of beating noise in fiber ring lasers by using a semiconductor optical amplifier in the laser cavity, which acts as a high-pass filter. Two different ring structures are presented as examples to demonstrate(More)
We report on the experimental demonstration of ultrafast all-optical switching and wavelength down-conversion based on a novel nonlinear Mach-Zehnder interferometer with subwavelength grating and wire waveguides. Unlike other periodic waveguides such as line-defects in a 2D photonic crystal lattice, a subwavelength grating waveguide confines the light as a(More)