Ivan E. Collier

Learn More
Matrix metalloproteases are secreted by mammalian cells as zymogens and, upon activation, initiate tissue remodeling by proteolytic degradation of collagens and proteoglycans. Activation of the secreted proenzymes and interaction with their specific inhibitors determine the net enzymatic activity in the extracellular space. We have previously demonstrated(More)
We have reported that SV40-transformed human lung fibroblasts secrete a 92-kDa metalloprotease which is not detectable in the parental cell line IMR-90. We now present the complete structure of this enzyme along with the evidence that it is identical to the 92-kDa metalloprotease secreted by normal human alveolar macrophages, phorbol ester-differentiated(More)
H-ras-transformed human bronchial epithelial cells (TBE-1) secrete a single major extracellular matrix metalloprotease which is not found in the normal parental cells. The enzyme is secreted in a latent form of 72 kDa, which can be activated to catalyze the cleavage of the basement membrane macromolecule type IV collagen. The substrates in their order of(More)
Secreted metalloproteases initiating proteolytic degradation of collagens and proteoglycans play a critical role in remodeling of the connective tissue. Activation of the secreted proenzymes and interaction with their specific inhibitors TIMP and TIMP-2 are responsible for regulation of enzyme activity in extracellular space. We have previously demonstrated(More)
We have purified and determined the complete primary structure of human stromelysin, a secreted metalloprotease with a wide range of substrate specificities. Human stromelysin is synthesized in a preproenzyme form with a calculated size of 53,977 Da and a 17-amino acid long signal peptide. Prostromelysin is secreted in two forms, with apparent molecular(More)
The human 72-kDa (CLG4A) and 92-kDa (CLG4B) type IV collagenases contain a domain consisting of three contiguous copies of the fibronectin (FN)-derived type II homology unit (T2HU), T2HU-1, T2HU-2, and T2HU-3. To investigate the functional role of this domain, we have constructed plasmids expressing beta-galactosidase fusion proteins with one or more of the(More)
We show that activated collagenase (MMP-1) moves processively on the collagen fibril. The mechanism of movement is a biased diffusion with the bias component dependent on the proteolysis of its substrate, not adenosine triphosphate (ATP) hydrolysis. Inactivation of the enzyme by a single amino acid residue substitution in the active center eliminates the(More)
The 72- and 92-kDa type IV collagenases are members of a group of secreted zinc metalloproteases. Two members of this family, collagenase and stromelysin, have previously been localized to the long arm of chromosome 11. Here we assign both of the two type IV collagenase genes to human chromosome 16. By sequencing, the 72-kDa gene is shown to consist of 13(More)
Two closely related secreted metalloproteases 72 and 92 kDa type IV collagenases (72- and 92T4Cl) consist of several structural domains, the functions of which are poorly understood. Both metalloproteases can bind to gelatin as well as form complexes with specific inhibitors in the proenzyme form. The biologic role of the proenzyme-inhibitor complex(More)
An investigation of gelatinase A binding to gelatin produced results that are inconsistent with a traditional bimolecular Michaelis-Menten formalism but are effectively accounted for by a power law characteristic of fractal kinetics. The main reason for this inconsistency is that the bulk of the gelatinase A binding depends on its ability to diffuse(More)