Learn More
In a variety of cells, the Ca2+ signalling process is mediated by the endoplasmic-reticulum-membrane-associated Ca2+ release channel, inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R). Being ubiquitous and present in organisms ranging from humans to Caenorhabditis elegans, InsP3R has a vital role in the control of cellular and physiological processes(More)
Binding of inositol 1,4,5-trisphosphate (IP(3)) to the amino-terminal region of IP(3) receptor promotes Ca(2+) release from the endoplasmic reticulum. Within the amino terminus, the first 220 residues directly preceding the IP(3) binding core domain play a key role in IP(3) binding suppression and regulatory protein interaction. Here we present a crystal(More)
Posttranslational modification of proteins with polyubiquitin occurs in diverse signaling pathways and is tightly regulated to ensure cellular homeostasis. Studies employing ubiquitin mutants suggest that the fate of polyubiquitinated proteins is determined by which lysine within ubiquitin is linked to the C terminus of an adjacent ubiquitin. We have(More)
Inactivating mutations in the ubiquitin (Ub) editing protein A20 promote persistent nuclear factor (NF)-κB signaling and are genetically linked to inflammatory diseases and hematologic cancers. A20 tightly regulates NF-κB signaling by acting as an Ub editor, removing K63-linked Ub chains and mediating addition of Ub chains that target substrates for(More)
Hedgehog (Hh) signaling is crucial for many aspects of embryonic development, whereas dysregulation of this pathway is associated with several types of cancer. Hedgehog-interacting protein (Hhip) is a surface receptor antagonist that is equipotent against all three mammalian Hh homologs. The crystal structures of human HHIP alone and bound to Sonic hedgehog(More)
Addition and removal of ubiquitin or ubiquitin chains to and from proteins is a tightly regulated process that contributes to cellular signaling and protein stability. Here we show that phosphorylation of the human deubiquitinase DUBA (OTUD5) at a single residue, Ser177, is both necessary and sufficient to activate the enzyme. The crystal structure of the(More)
CaBP1 (calcium-binding protein 1) is a 19.4-kDa protein of the EF-hand superfamily that modulates the activity of Ca(2+) channels in the brain and retina. Here we present data from NMR, microcalorimetry, and other biophysical studies that characterize Ca(2+) binding, Mg(2+) binding, and structural properties of recombinant CaBP1 purified from Escherichia(More)
Polyubiquitination is a posttranslational modification where ubiquitin chains containing isopeptide bonds linking one of seven ubiquitin lysines with the C terminus of an adjoining ubiquitin are covalently attached to proteins. While functions of K48- and K63-linked polyubiquitin are understood, the role(s) of noncanonical K11-linked chains is less clear. A(More)
Three isoforms of the inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), IP(3)R1, IP(3)R2, and IP(3)R3, have different IP(3)-binding affinities and cooperativities. Here we report that the amino-terminal 604 residues of three mouse IP(3)R types exhibited K(d) values of 49.5 +/- 10.5, 14.0 +/- 3.5, and 163.0 +/- 44.4 nm, which are close to the intrinsic(More)
Inositol 1,4,5-trisphosphate receptors (IP(3)R) are intracellular Ca(2+) release channels whose opening requires binding of two intracellular messengers IP(3) and Ca(2+). The regulation of IP(3)R function has also been shown to involve a variety of cellular proteins. Recent biochemical and structural analyses have deepened our understanding of how the(More)