Ivan A. Alexandrov

Learn More
In this report we review α-satellite DNA (AS) sequence data to support the following proposed scenario of AS evolution. Centromeric regions of lower primate chromosomes have solely "old" AS based on type A monomeric units. Type A AS is efficiently homogenized throughout the whole genome and is nearly identical in all chromosomes. In the ancestors of great(More)
Conservation of DNA segments performing sequence-related functions is a landmark of selection and functional significance. Phylogenetic variability of alpha satellite and apparent absence of conserved regions calls its functional significance into question, even though sequence-specific alpha satellite-binding proteins pJ alpha and CENP-B have been(More)
Alpha satellite domains that currently function as centromeres of human chromosomes are flanked by layers of older alpha satellite, thought to contain dead centromeres of primate progenitors, which lost their function and the ability to homogenize satellite repeats, upon appearance of a new centromere. Using cladistic analysis of alpha satellite monomers,(More)
The chromosomal distribution of sequences homologous to 18 coned alpha satellite fragments was established by in situ hybridization. It appeared that all the cloned sequences were members of small repeated families located on single chromosome pairs. Among the sequences studied specific molecular markers for chromosomes 3, 4, 10,11,17,18 and X were found.(More)
The biased distribution of dispersed repeat insertions in various types of primate specific alpha satellites (AS) is being discussed in the literature in relation to the modes of AS evolution and their possible roles in maintenance and disruption of functional centromeres. However, such a bias has not been properly documented on a genome-wide scale so far.(More)
Two types of human chromosome 18-specific alpha satellite fragments have been cloned and sequenced. They represent closely related but distinct alphoid families formed by two different types of the higher-order repeated units (1360-bp EcoRI and 1700-bp HindIII fragments) that do not alternate in the genome. The individual repeats within each family are 99%(More)
We have analyzed more than 500 alphoid monomers either sequenced in our laboratory or available in the literature. Most of them belonged to the well studied suprachromosomal families 1, 2 and 3 characterized by dimeric (1 and 2) and pentameric (3) ancestral periodicities. The sequences that did not belong to the previously known families were subjected to(More)
It can be invoked from the theory of tandem repeat homogenization that DNA on a satellite/non-satellite border may carry sequence marks of molecular processes basic to satellite evolution. We have sequenced a continuous 17-kb alpha satellite fragment bordering the non-satellite in human chromosome 21, which is devoid of higher-order repeated structure,(More)
We show here that the mode of cell death in IL-6-starved T1165 and T1198 plasmacytoma cell lines is apoptosis, and that it can be suppressed by phorbol ester (PMA) treatment in a protein kinase C (PKC)-mediated process that involves alpha and/or delta isozymes. PMA-induced PKC activation, but not the depletion that follows it, participates in the(More)
The cloned alpha-satellite DNA sequences were used to evaluate the specificity and possible variability of repetitive DNA in constitutive heterochromatin of human chromosomes. Five probes with high specificity to individual chromosomes (chromosomes 3, 11, 17, 18, and X) were in situ hybridized to metaphase chromosomes of different individuals. The stable(More)