Iva Zusková

Learn More
The dependence of the effective electrophoretic mobility on pH of the background electrolyte was experimentally determined by capillary zone electrophoresis (CZE) for cationic forms of amino acids. The pH of the background electrolytes was in the highly acidic range, 1.6-2.6 pH units, to ensure a high degree of protonation of the amino acids. Poly(vinyl(More)
A mathematical and computational model described in the previous paper (Gas, B., Coufal, P., Jaros, M., Muzikár, J., Jelínek, L., J. Chromatogr. A 2001, 905, 269-279) is adapted, algorithmized, and a computer program PeakMaster having a status of freeware (http://natur.cuni.cz/ approximately gas) is introduced. The model enables optimization of background(More)
The FOXO forkhead transcription factors are potent transcriptional activators involved in a wide range of key biological processes. In this work, the real-time kinetics of the interaction between the FOXO4-DNA binding domain (FOXO4-DBD) and the DNA was studied by using surface plasmon resonance (SPR). SPR analysis revealed that the interaction between(More)
The effective mobilities of the cationic forms of common amino acids--mostly proteinogenic--were determined by capillary zone electrophoresis in acidic background electrolytes at pH between 2.0 and 3.2. The underivatized amino acids were detected by the double contactless conductivity detector. Experimentally measured effective mobilities were fitted with(More)
The effect of ionic strength of the background electrolyte (BGE) composed of tris(hydroxymethyl)aminomethane (Tris) and acetic acid on the electrophoretic mobility of mono-, di- and trivalent anions of aliphatic and aromatic carboxylic and sulfonic acids was investigated by capillary zone electrophoresis (CZE). Actual ionic mobilities of the above anions(More)
A mathematical model developed for aqueous solutions and adapted to methanol as solvent was applied to predict the electromigration characteristics of analytes and background electrolytes in capillary zone electrophoresis. These characteristics are the effective mobility, and the tendency of the analyte to undergo peak-broadening due to electromigration(More)
Enantioseparation of N-tert.-butyloxycarbonyl amino acids (N-t-Boc-Aas) with teicoplanin chiral selector was performed in two different separation systems: A teicoplanin-based chiral stationary phase (CSP-TE) was used in reversed-phase HPLC, and the same chiral selector (CS) was added into a background electrolyte (BGE) in HPCE. The enantioselective(More)
We are introducing a computer implementation of the mathematical model of zone electrophoresis (CZE) described in Stedry, M., Jaros, M., Hruska, V., Gas, B., Electrophoresis 2004, 25, 3071-3079 program PeakMaster. The computer model calculates eigenmobilities, which are the eigenvalues of the matrix tied to the linearized continuity equations, and which are(More)
The stability (affinity, association, binding, complexation, formation) constant characterizes binding interaction between the analyte and the complexing agent. Knowledge of the stability constant makes possible the prediction and estimation of the binding behavior of constituents (amino acids, peptides, proteins, drugs, antibiotics, enzymes, enantiomers)(More)
Qualitative and quantitative isotachophoretic indices of 73 amino acids, dipeptides and tripeptides were simulated under 24 leading electrolyte conditions covering the pH range 6.4-10. The RE values and time-based zone lengths are tabulated together with the absolute mobility (m0) and pKa values used. The leading electrolyte used was 10 mM HCl and the pH(More)