Iván Méndez-López

Learn More
In the past decade, the inner nuclear membrane has become a focus of research on inherited diseases. A heterogeneous group of genetic disorders known as laminopathies have been described that result from mutations in genes encoding nuclear lamins, intermediate filament proteins associated with the inner nuclear membrane. Mutations in genes encoding integral(More)
X-linked Emery-Dreifuss muscular dystrophy is caused by loss of function of emerin, an integral protein of the inner nuclear membrane. Yet emerin null mice are essentially normal, suggesting the existence of a critical compensating factor. We show that the lamina-associated polypeptide1 (LAP1) interacts with emerin. Conditional deletion of LAP1 from(More)
Laminopathies are a group of diseases that share wrong codification of lamins, building proteins of the nuclear lamina. Different tissues are affected in those disorders: striated muscle, adipose tissue, central or peripheral nervous system and aging process. Emery-Dreifuss muscular dystrophy and Hutchinson-Gildford Progery Syndrome are two examples of(More)
Lamina-associated polypeptide 1 (LAP1) is an integral protein of the inner nuclear membrane that has been implicated in striated muscle maintenance. Mutations in its gene have been linked to muscular dystrophy and cardiomyopathy. As germline deletion of the gene encoding LAP1 is perinatal lethal, we explored its potential role in myogenic differentiation(More)
  • 1