Iván A. Pérez-Álvarez

Learn More
—We use real measurements of the underwater channel to simulate a whole underwater RF wireless sensor networks, including buffer) and complete MAC and routing protocols. The results should be useful for designing centralized and distributed algorithms for applications like monitoring, event detection, localization and aid to navigation. We also explain the(More)
—We analyze the problem of localization algorithms for underwater sensor networks. We first characterize the underwater channel for radio communications and adjust a linear model with measurements of real transmissions. We propose an algorithm where the sensor nodes collaboratively estimate their unknown positions in the network. In this setting, we assume(More)
Underwater Wireless Sensor Networks (UWSNs) using electromagnetic (EM) technology in marine shallow waters are examined, not just for environmental monitoring but for further interesting applications. Particularly, the use of EM waves is reconsidered in shallow waters due to the benefits offered in this context, where acoustic and optical technologies have(More)
In the first part of the paper, we modeled and characterized the underwater radio channel in shallowwaters. In the second part,we analyze the application requirements for an underwaterwireless sensor network (U-WSN) operating in the same environment and perform detailed simulations. We consider two localization applications, namely self-localization and(More)
Although most of the research on Cognitive Radio is focused on communication bands above the HF upper limit (30 MHz), Cognitive Radio principles can also be applied to HF communications to make use of the extremely scarce spectrum more efficiently. In this work we consider legacy users as primary users since these users transmit without resorting to any(More)