Iuliana Radu

Learn More
Quasi-particles with fractional charge and statistics, as well as modified Coulomb interactions, exist in a two-dimensional electron system in the fractional quantum Hall (FQH) regime. Theoretical models of the FQH state at filling fraction v = 5/2 make the further prediction that the wave function can encode the interchange of two quasi-particles, making(More)
Recent theories suggest that the quasiparticles that populate certain quantum Hall states should exhibit exotic braiding statistics that could be used to build topological quantum gates. Confined systems that support such states at a filling fraction ν = 5/2 are of particular interest for testing these predictions. Here, we report transport measurements of(More)
Spin Wave Devices (SWDs) are promising candidates for scaling electronics beyond the domain of CMOS. In contrast to traditional charge-based technologies, SWDs rely on propagating oscillation of magnetization as information carrier. Thanks to the intrinsic wave computation capability of these devices, the majority gate is implemented with low physical(More)
—In this paper, we present a design and benchmark-ing methodology of Spin Wave Device (SWD) circuits based on micromagnetic modeling. SWD technology is compared against a 10nm FinFET CMOS technology, considering the key metrics of area, delay and power. We show that SWD circuits outperform the 10nm CMOS FinFET equivalents by a large margin. The(More)
We present measurements of the rates for an electron to tunnel on and off a quantum dot, obtained using a quantum point contact charge sensor. The tunnel rates show exponential dependence on drain-source bias and plunger gate voltages. The tunneling process is shown to be elastic, and a model describing tunneling in terms of the dot energy relative to the(More)
As scaling of conventional silicon-based electronics is reaching its ultimate limit, considerable effort has been devoted to find new materials and new device concepts that could ultimately outperform standard silicon transistors. In this perspective two-dimensional transition metal dichalcogenides, such as MoS2 and WSe2, have recently attracted(More)
  • 1