Iuliana Oprea

  • Citations Per Year
Learn More
In this paper we report and analyze complex spatiotemporal dynamics recorded in electroconvection in the nematic liquid crystal I52, driven by an ac voltage slightly above the onset value. The instability mechanism creating the pattern is an oscillatory (Hopf) instability, giving rise to two pairs of counterpropagating rolls traveling in oblique directions(More)
The snow surface is very dynamic, and the roughness of the snowpack surface varies spatially and temporally. The snow surface roughness influences the movement of air across the snow surface as well as the resulting transfers of energy, and is used to estimate the sensible and latent heat fluxes to and/or from the snow surface to the atmosphere. In the(More)
Cyclic patterns of neuronal activity are ubiquitous in animal nervous systems, and partially responsible for generating and controlling rhythmic movements such as locomotion, respiration, swallowing and so on. Clarifying the role of the network connectivities for generating cyclic patterns is fundamental for understanding the generation of rhythmic(More)
It has been suggested by experimentalists that a weakly nonlinear analysis of the recently introduced equations of motion for the nematic electroconvection by M. Treiber and L. Kramer [Phys. Rev. E 58, 1973 (1998)] has the potential to reproduce the dynamics of the zigzag-type extended spatiotemporal chaos and localized solutions observed near onset in(More)
We report on a new mode interaction found in electroconvection experiments on the nematic liquid crystal mixture Phase V in planar geometry. The mode interaction (codimension two) point occurs at a critical value of the frequency of the driving AC voltage. For frequencies below this value the primary pattern-forming instability at the onset voltage is an(More)
The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 degrees C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a(More)
  • 1