Learn More
Inotropic effects of electric currents applied during the refractory period have been reported in cardiac muscle in vitro using voltage-clamp techniques. We investigated how electric currents modulate cardiac contractility in normal canine hearts in vivo. Six dogs were instrumented to measure regional segment length, ventricular volume (sonomicrometry), and(More)
Heart failure is a highly prevalent disease in western society. Drug therapies aimed at increasing myocardial contractility have been associated with decreased survival. Several short and mid term clinical studies have suggested adjuvant or alternative therapies to congestive heart failure using modified pacing techniques that were aimed to increase(More)
We assessed the feasibility of cardiac contractility modulation (CCM) by electric currents applied during the refractory period in patients with heart failure (HF). Extracellular electric currents modulating action potential and calcium transients have been shown to potentiate myocardial contractility in vitro and in animal models of chronic HF. CCM signals(More)
We investigated the mechanism of positive inotropism of electric currents applied during the absolute refractory period. Ten Langendorff-perfused ferret hearts were instrumented to measure isovolumic left ventricular pressure (LVP) and the aequorin luminescence. Biphasic square-wave electric currents (+/-20 mA, total duration 30 ms) were delivered between(More)
  • 1