Learn More
The mammalian gut microbiota is essential in shaping many of its host's functional attributes. One such microbiota resides in the bovine digestive tract in a compartment termed as the rumen. The rumen microbiota is necessary for the proper physiological development of the rumen and for the animal's ability to digest and convert plant mass into food(More)
The bovine rumen houses a complex microbiota which is responsible for cattle's remarkable ability to convert indigestible plant mass into food products. Despite this ecosystem's enormous significance for humans, the composition and similarity of bacterial communities across different animals and the possible presence of some bacterial taxa in all animals'(More)
BACKGROUND The ability to establish human induced pluripotent stem cells (hiPSCs) by reprogramming of adult fibroblasts and to coax their differentiation into cardiomyocytes opens unique opportunities for cardiovascular regenerative and personalized medicine. In the current study, we investigated the Ca(2+)-handling properties of hiPSCs(More)
Ruminant livestock are important sources of human food and global greenhouse gas emissions. Feed degradation and methane formation by ruminants rely on metabolic interactions between rumen microbes and affect ruminant productivity. Rumen and camelid foregut microbial community composition was determined in 742 samples from 32 animal species and 35(More)
Ruminants are completely dependent on their microbiota for feed digestion and consequently, their viability. It is therefore tempting to hypothesize a connection between the composition and abundance of resident rumen bacterial taxa and the physiological parameters of the host. Using a pyrosequencing approach, we characterized the rumen bacterial community(More)
Dairy cattle hold enormous significance for man as a source of milk and meat. Their remarkable ability to convert indigestible plant mass into these digestible food products resides in the rumen - an anaerobic chambered compartment - in the bovine digestive system. The rumen houses a complex microbiota which is responsible for the degradation of plant(More)
Ruminants have the remarkable ability to convert human-indigestible plant biomass into human-digestible food products, due to a complex microbiome residing in the rumen compartment of their upper digestive tract. Here we report the discovery that rumen microbiome components are tightly linked to cows' ability to extract energy from their feed, termed feed(More)
Deep sequencing techniques used in metagenomic approaches have greatly advanced the study of microbial communities in various environments. However, one microbial segment that has remained largely unexplored is the natural plasmids residing within microbial environments. Plasmids are perceived as mobile genetic elements that exist extra-chromosomally and(More)
Acetyl phosphate is a central metabolite involved in a broad range of versatile cellular functions. Recently it was observed that in Escherichia coli the acetyl phosphate pathway is required for efficient ATP-dependent proteolysis. Deletion of the operon coding for acetyl phosphate metabolism (DeltaackApta) results in a very low cytoplasmic level of acetyl(More)
The cellulosome is an extracellular multi-enzyme complex that is considered one of the most efficient plant cell wall-degrading strategies devised by nature. Its unique modular architecture, achieved by high affinity and specific interaction between protein modules (cohesins and dockerins) enables formation of various enzyme combinations. Extensive research(More)