Learn More
Ruminants are completely dependent on their microbiota for feed digestion and consequently, their viability. It is therefore tempting to hypothesize a connection between the composition and abundance of resident rumen bacterial taxa and the physiological parameters of the host. Using a pyrosequencing approach, we characterized the rumen bacterial community(More)
BACKGROUND The ability to establish human induced pluripotent stem cells (hiPSCs) by reprogramming of adult fibroblasts and to coax their differentiation into cardiomyocytes opens unique opportunities for cardiovascular regenerative and personalized medicine. In the current study, we investigated the Ca(2+)-handling properties of hiPSCs(More)
The bovine rumen houses a complex microbiota which is responsible for cattle's remarkable ability to convert indigestible plant mass into food products. Despite this ecosystem's enormous significance for humans, the composition and similarity of bacterial communities across different animals and the possible presence of some bacterial taxa in all animals'(More)
Ruminant livestock are important sources of human food and global greenhouse gas emissions. Feed degradation and methane formation by ruminants rely on metabolic interactions between rumen microbes and affect ruminant productivity. Rumen and camelid foregut microbial community composition was determined in 742 samples from 32 animal species and 35(More)
Ruminants have the remarkable ability to convert human-indigestible plant biomass into human-digestible food products, due to a complex microbiome residing in the rumen compartment of their upper digestive tract. Here we report the discovery that rumen microbiome components are tightly linked to cows' ability to extract energy from their feed, termed feed(More)
BACKGROUND Lactobacillus plantarum is an attractive candidate for metabolic engineering towards bioprocessing of lignocellulosic biomass to ethanol or polylactic acid, as its natural characteristics include high ethanol and acid tolerance and the ability to metabolize the two major polysaccharide constituents of lignocellulolytic biomass (pentoses and(More)
Motivation Plasmids and other mobile elements are central contributors to microbial evolution and genome innovation. Recently, they have been found to have important roles in antibiotic resistance and in affecting production of metabolites used in industrial and agricultural applications. However, their characterization through deep sequencing remains(More)
Ruminococcus albus, a cellulolytic bacterium, is a critical member of the rumen community. Ruminococcus albus lacks a classical cellulosome complex, but it possesses a unique family 37 carbohydrate-binding module (CBM37), which is integrated into a variety of carbohydrate-active enzymes. We developed a potential molecular tool for functional phylotyping of(More)
Bacteria associated with the digestive tract of multicellular organisms have been shown to play a major role in their hosts' functioning. In fish, it has been proposed that food fermentation occurs inside the pyloric ceca, pouch like organs found in their digestive tract. However, this notion remains controversial. Furthermore, changes in pyloric cecal(More)
P lasmids are episomally replicating genetic elements which carry backbone genes that are important for their replication and maintenance within their host, and accessory genes that might confer an advantage to their host in its ecological niche. As such, they are often perceived as a powerful evolutionary force, which horizontally introduces new traits(More)