Learn More
Recent advances in the isolation and characterization of neural precursor cells suggest that they have properties that would make them useful transplants for the treatment of central nervous system disorders. We demonstrate here that spinal cord cells isolated from embryonic day 14 Sprague-Dawley and Fischer 344 rats possess characteristics of precursor(More)
It is widely held that tau determines the stability of microtubules in growing axons, although direct evidence supporting this hypothesis is lacking. Previous studies have shown that the microtubule polymer in the distal axon and growth cone is the most dynamic of growing axons; it turns over more rapidly and is more sensitive to microtubule depolymerizing(More)
Adult mammalian CNS neurons do not normally regenerate their severed axons. This failure has been attributed to scar tissue and inhibitory molecules at the injury site that block the regenerating axons, a lack of trophic support for the axotomized neurons, and intrinsic neuronal changes that follow axotomy, including cell atrophy and death. We studied(More)
Transplants of fibroblasts genetically modified to express BDNF (Fb/BDNF) have been shown to promote regeneration of rubrospinal axons and recovery of forelimb function when placed acutely into the injured cervical spinal cord of adult rats. Here we investigated whether Fb/BDNF cells could stimulate supraspinal axon regeneration and recovery after chronic(More)
MAP1B is a microtubule-associated phosphoprotein that is particularly highly expressed in developing neurons. There is experimental evidence that it plays an important role in neuronal differentiation, especially the extension of axons and dendrites, but exactly what role is unclear. Recent experiments have shed light on the gene structure of MAP1B and(More)
Microtubules play an important role in establishing cellular architecture. Neuronal microtubules are considered to have a role in dendrite and axon formation. Different portions of the developing and adult brain microtubules are associated with different microtubule-associated proteins (MAPs). The roles of each of the different MAPs are not well understood.(More)
Microtubule-associated protein MAP1B from neonatal rat brain was separated on sodium dodecyl sulfate-containing polyacrylamide gels into two isoforms (high and low MAP1B), both of which were recognized by a panel of monoclonal and polyclonal antibodies against MAP1B. In addition, SMI31, a monoclonal antibody directed against phosphorylated epitopes of the(More)
Prenatal exposure to cocaine has the potential to modify normal brain development and result in behavioral dysfunction. We used a new animal model in which cocaine was administered intravenously during prenatal development in pregnant rabbits twice daily at low dosages. Analysis of brain development focused on two areas of the cerebral cortex, anterior(More)
Glial-restricted precursor (GRP) cells are among a number of candidate cells for transplantation repair of CNS injury. The isolation and characterization of these cells in vitro have been described previously, but their in vivo properties are not well understood. We examined the fate and migration of grafted fetal GRP cells harvested from alkaline(More)
Multipotent neural stem cells (NSCs) have the potential to differentiate into neuronal and glial cells and are therefore candidates for cell replacement after CNS injury. Their phenotypic fate in vivo is dependent on the engraftment site, suggesting that the environment exerts differential effects on neuronal and glial lineages. In particular, when grafted(More)