Learn More
It is widely held that tau determines the stability of microtubules in growing axons, although direct evidence supporting this hypothesis is lacking. Previous studies have shown that the microtubule polymer in the distal axon and growth cone is the most dynamic of growing axons; it turns over more rapidly and is more sensitive to microtubule depolymerizing(More)
Adult mammalian CNS neurons do not normally regenerate their severed axons. This failure has been attributed to scar tissue and inhibitory molecules at the injury site that block the regenerating axons, a lack of trophic support for the axotomized neurons, and intrinsic neuronal changes that follow axotomy, including cell atrophy and death. We studied(More)
Recent advances in the isolation and characterization of neural precursor cells suggest that they have properties that would make them useful transplants for the treatment of central nervous system disorders. We demonstrate here that spinal cord cells isolated from embryonic day 14 Sprague-Dawley and Fischer 344 rats possess characteristics of precursor(More)
Transplants of fibroblasts genetically modified to express BDNF (Fb/BDNF) have been shown to promote regeneration of rubrospinal axons and recovery of forelimb function when placed acutely into the injured cervical spinal cord of adult rats. Here we investigated whether Fb/BDNF cells could stimulate supraspinal axon regeneration and recovery after chronic(More)
Prenatal exposure to cocaine has the potential to modify normal brain development and result in behavioral dysfunction. We used a new animal model in which cocaine was administered intravenously during prenatal development in pregnant rabbits twice daily at low dosages. Analysis of brain development focused on two areas of the cerebral cortex, anterior(More)
The limbic-system-associated membrane protein (LAMP) is a 64-68-kDa neuronal surface glycoprotein distributed in cortical and subcortical regions of the limbic system. The human LAMP gene was cloned by RT-PCR using human cerebral cortex mRNA and oligodeoxyribonucleotide (oligo) primers derived from the rat lamp cDNA sequence. The human and rat LAMP cDNAs(More)
Glial-restricted precursor (GRP) cells are among a number of candidate cells for transplantation repair of CNS injury. The isolation and characterization of these cells in vitro have been described previously, but their in vivo properties are not well understood. We examined the fate and migration of grafted fetal GRP cells harvested from alkaline(More)
Ex vivo gene therapy, utilizing modified fibroblasts that deliver BDNF or NT-3 to the acutely injured spinal cord, has been shown to elicit regeneration and recovery of function in the adult rat. Delayed grafting into the injured spinal cord is of great clinical interest as a model for treatment of chronic injury but may pose additional obstacles that are(More)
Multipotent neural stem cells (NSCs) have the potential to differentiate into neuronal and glial cells and are therefore candidates for cell replacement after CNS injury. Their phenotypic fate in vivo is dependent on the engraftment site, suggesting that the environment exerts differential effects on neuronal and glial lineages. In particular, when grafted(More)
Transplanting neuronal and glial restricted precursors (NRP/GRP) into a midthoracic injury 9 d after contusion improved bladder and motor function, diminished thermal hypersensitivity, and modified lumbosacral circuitry compared with operated controls (OP-controls). Histological analysis showed that NRP/GRP survived, filled the lesion site, differentiated(More)